Аппаратура радиационного контроля

Рис. 5.Состав системы радиационного контроля радиационноопасного объекта и возможные варианты информационных потоков внутри объекта.

• измерение мощности дозы гамма-излучения;

• измерение плотности потока альфа-, бета- и нейтронного-излучения;

• измерение объемной активности радиоактивных аэрозолей альфа- и бета-активных долгоживущих нуклидов в рабочих помещениях и выбросах;

• измерение объемной активности радиоактивных газов и паров в рабочих помещениях и выбросах;

• измерение объемной активности радионуклидов в жидкости и в жидких средах;

• измерение мощности дозы гамма-излучения, объемной и удельной активности проб объектов окружающей среды.

Рассмотрим состояние обеспеченности объектов автоматизированными системами радиационного контроля по следующим направлениям:

• системы РК для АЭС;

• системы РК для ЯТЦ;

• подсистемы контроля выбросов и сбросов;

• системы (подсистемы) КРО вокруг объектов (АСКРО).

Очевидно, когда идет речь о системе «радиационной безопасности» следует иметь в виду комплексное обеспечение всеми или основными вышеперечисленными системами и подсистемами одного объекта. Именно этот подход диктовал необходимость разработки комплекса технических средств радиационного контроля и создания на их основе типовых систем РК для различных радиационно-опасных объектов (рис. 5).

2.5.1. Автоматизированные информационноизмерительные системы.

Система радиационного контроля АКРБ-08 предназначена для использования на АЭС и других радиационно-опасных объектах взамен устаревших комплексов АКРБ-03 «Сейвал» и АКРБ-06 «Горбач». Набор технических средств, составляющих агрегатированный комплекс АКРБ-08, позволяет проектным путем создавать Систему контроля радиационной безопасности объектов [39, 100, 101].

Технические средства АКРБ-08 обеспечивают:

• оперативный контроль за полями излучения и активностью радионуклидов на рабочих местах и в производственных помещениях;

• контроль за нераспространением радиоактивных загрязнений в проходных и выездных путях внутри и на границе контролируемых объектов;

• контроль за уровнем радиоактивных излучений в трубопроводах, системе водо- и газоочистки, в системе вентиляции, при сборе и выбросе радионуклидов за пределы объекта;

• оповещение о превышении допустимых уровней загрязнения одежды, обуви, кожного покрова, автотранспорта;

• контроль радиоактивных сбросов и выбросов;

• контроль дозы облучения персонала при всех режимах работы.

На основе технических средств комплекса АКРБ-08 спроектированы системы радиационной безопасности для реакторов типа ВВР и РБМК. Система успешно эксплуатируется на отечественных и зарубежных АЭС.

Основные технические средства этого комплекса соответствуют требованиям «Общих правил безопасности (ОПБ-88)» и специальных условий поставки оборудования, материалов и изделий для объектов атомной энергетики (СУП) и ГОСТ 27452.

Блоки и устройства детектирования ионизирующих излучений АКРБ-08 имеют следующие измерительные характеристики:

мощность экспозиционной дозы гамма-излучения, Р/ч                   10-5 — 103;

объемная активность, Бк/м3:

инертных радиоактивных газов                                                         2,5 · 104 — 1013

бета-излучающих аэрозолей                                                                25 — 105

радионуклидов в остром паре паропроводов ПГ                             104-5 · 108

радионуклида 16N в остром паре паропровода ПГ                           3 · 103 — 5 · 108

радионуклидов в жидкости                                                                 2,5 · 103 — 3,7 · 1012

радионуклида 24Na в жидкости

плотность потока запаздывающих нейтронов, н/с · м2                    104 — 107

средняя за сутки объемная активность выбросов, Бк/м3:

паров радионуклида 131I в смеси с другими радионуклидами        0,27 — 1,35 · 104

аэрозолей бета-активных радионуклидов, Бк/м3                              0,25 — 1,25 · 104

Система АКРБ-08 в настоящее время не отвечает ряду современных требований (структура, интерфейс, состав БД и УД, комплектующие изделия и т.д.).

На смену этой системе разработан более современный Комплекс технических средств для АЭС — Автоматизированная система радиационного контроля КТС КРБ [62].

Сравнительные характеристики АКРБ-08 и системы АСРК-01РБ в части подсистемы контроля радиационной обстановки (КРО), выполненной на основе КТС КРБ, приведены в табл. 25.

Автоматизированная система радиационного контроля АСРК-01РБ предназначена для непрерывного автоматизированного контроля радиационной безопасности АЭС и является центральным звеном КТС КРБ. Она представляет собой открытую распределенную трехуровневую информационно-измерительную систему. Модульный принцип построения обеспечивает высокую гибкость, многовариантную структуру исполнения. Система по информативности относится к классу систем принятия решений. Изложение построения АСРК-01РБ обеспечивает своевременность и правильность принятия решений.

Причем система АСРК-01РБ поставляется Заказчику как комплекс аппаратуры (подсистем) радиоэкологической безопасности. Верхний уровень системы объединяет все подсистемы Комплекса.

Система АСРК-01РБ обеспечивает:

• получение необходимой и достаточной информации, подтверждающей, что АЭС находится в пределах безопасности эксплуатации (дозы облучения персонала и населения, содержание радиоактивных веществ в газоаэрозольных выбросах и водных сбросах, а также в окружающей среде не превышают допустимых пределов, установленных нормативными документами);

• современное обнаружение отклонений от условий нормальной эксплуатации АЭС и передачу информации об этом на средства отображения АСРК-01РБ блочного станционного уровня и надзорным органам;

Таблица 25.Автоматизированные системы контроля радиационной безопасности, ориентированные на типовые проекты АЭС

Примечание. * кан. — каналы; ** СУП (для АЭС) — ОТУ «Специальные условия поставки оборудования, приборов, материалов и изделий для объектов атомной энергетики».

• оперативную сигнализацию о выходе АЭС за пределы безопасной эксплуатации, оценку масштаба аварии, получение информации, необходимой для принятия решений о ликвидации последствий аварии, защите персонала и населения.

Система АСРК-01РБ относится к системам, важным для безопасности (класс 3Н согласно ОПБ-88/07). Средства измерения, сигналы от которых используются в формировании управляющих воздействий на элементы систем безопасности ЭБ, относятся к классу 2У по ОПБ-88/97. Технические средства, не влияющие на безопасность (переносные приборы, лабораторное оборудование, средства ремонта и поверки), относятся к классу 4Н.

Построение системы АСРК-01РБ выполнено на основе современной методической базы, включающей:

• оперативный дистанционный контроль состава и активности важнейших радионуклидов в газообразных и жидких средах, обеспечивающий получение наиболее точных и информационно насыщенных данных;

• математическое моделирование процессов формирования радиоактивности технологических сред, водных сбросов и газообразных выбросов, позволяющее осуществлять комплексную обработку измерительной информации, обеспечивать своевременную диагностику состояния защитных барьеров, прогнозировать изменение радиационной обстановки на АЭС и в окружающей природной среде (ОПС). В системе:

• использованы новейшие компьютерные технологии, которые обеспечивают принципиально новые функциональные возможности системы АСРК-01РБ, соответствующие современной международной практике и нормативной базе;

• применено новое поколение российских интеллектуальных унифицированных средств нижнего уровня на основе микропроцессорной техники. Это открывает возможность свободного конфигурирования системы АСРК-01РБ в вариантах, оптимально соответствующих конкретному проекту АЭС. Кроме того, предлагаемые технические средства должны обеспечить привлекательные экономические показатели системы АСРК-01РБ с учетом ее высоких функциональных характеристик.

Исходя из указанных выше требований и целей, система АСРК-01РБ конфигурируется из следующих подсистем по комплексам решаемых задач:

• подсистема радиационного технологического контроля (РТК), включающая подсистему контроля параметров, важных для безопасности (КПВБ);

• подсистема контроля радиационной обстановки (КРО);

• подсистема контроля радиоактивных загрязнений (КРЗ);

• подсистема контроля индивидуальных доз (ИДК).

Подсистема РТК предназначена для оценки состояния технологических систем энергоблока, контроля целостности защитных барьеров, поиска источников утечки радионуклидов и оценки величины течи, контроля за поступлением радиоактивных веществ в окружающую природную среду и прогнозирования изменения уровней выбросов и сбросов.

Комплекс задач, решаемых подсистемой РТК контроль герметичности оболочек твэлов, обнаружение и оценка величины течи первого контура, контроль герметичности термооболочки, контроль течи из оборудования, охлаждаемого технической водой, контроль эффективности работы систем спецводоочистки, спецгазоочистки и систем вентиляции, контроль уровня и радионуклидного состава газоаэрозольных выбросов и жидких сбросов со станции, классификация твердых радиоактивных отходов станции по группам и прогнозирование изменения значений активности радионуклидов за защитными барьерами.

Подсистема КПВБ дублирует по основным задачам подсистему РТК.

Основными результатами решения задач РТК являются: операктивная диагностика состояния технологического оборудования в процессе его эксплуатации, сопоставление значений контролируемых параметров с уставками, выдача рекомендаций по устранению причин, вызвавших отклонения радиационных параметров от нормируемых.

Подсистема КРО предназначена для контроля радиационной обстановки в производственных помещениях АЭС, своевременного выявления аварийных ситуаций и формирования сообщений об ухудшении радиационных параметров, обеспечения контроля радиационной обстановки в аварийный и послеаварийный периоды. Комплекс задач, решаемых подсистемой КРО контроль состояния радиационной обстановки в помещениях АЭС и оперативный анализ и прогнозирование изменения радиационной обстановки.

Основными результатами решения задач КРО являются получение необходимой информации о состоянии радиационной обстановки в помещениях АЭС и своевременное оповещение персонала об ее изменении для недопущения переоблучения персонала.

Подсистема КРЗ предназначена для контроля за загрязнением радионуклидами производственных помещений, оборудования, транспорта и персонала, контроля за накоплением, сортировкой, движением по территории и вывозом за пределы энергоблоков и АЭС радиоактивных отходов.

Комплекс задач, решаемых подсистемой КРЗ: контроль степени радиоактивного загрязнения поверхностей помещений, находящегося в них оборудования, кожных покровов, средств индивидуальной защиты в спецпрачечной, контроль за перемещением радиоактивных отходов и загрязненного оборудования, предотвращение несанкционированного выноса и вывоза с территории АЭС радиоактивных материалов, расчет и прогнозирование степени радиоактивного загрязнения объектов АЭС и решение задач лабораторного периодического и эпизодического контроля радиационного состояния объекта.

Основными результатами решения задач КРЗ являются: оперативное оповещение персонала о наличии и степени радиоактивного загрязнения объектов контроля для своевременного принятия мер по защите кожных покровов и органов дыхания, по недопущению распространения радиоактивного загрязнения, по ликвидации и локализации этого загрязнения.

Подсистема ИДК предназначена для контроля, прогнозирования и учета дозовых нагрузок на персонал во всех режимах эксплуатации АЭС, их планирования, а также контроля за допуском персонала в зоне строгого режима АЭС.

Комплекс задач, решаемых подсистемой ИДК: контроль и учет индивидуальных доз внешнего облучения персонала, контроль и учет ожидаемых доз внутреннего облучения персонала, контроль и учет посещаемости персоналом зоны строгого режима и контроль за нахождением персонала в зону строгого режима.

Основными результатами решения задач ИДК являются: недопущение переоблучения персонала свыше регламентированных уровней при всех режимах эксплуатации АЭС, оптимизация проведения работ с целью минимизации дозовых затрат.

Основу комплекса нижнего и верхнего уровня системы АСРК-01РБ составляют современные высокоинформативные, унифицированные российские программно-технические средства, в том числе автоматические спектрометрические мониторы, интеллектуальные устройства детектирования интегральных радиационных параметров.

Все КТС системы АСРК-01РБ строятся по иерархическому принципу, как распределенные, открытые и всережимные автоматизированные системы.

Перечень блоков детектирования и устройств детектирования приведен в табл. 26.

Технические средства КТС КРБ предназначены для работы в жестких условиях эксплуатации. Технические средства системы поставляются после прохождения метрологической аттестации и не требуют дополнительной регулировки при пусконаладочных работах на объекте.

При поставке системы на объект предусмотрено (по желанию Заказчика) комплектование системы переносным поверочным оборудованием — КППО, позволяющим проводить поверку блоков (устройств) детектирования без их демонтажа с объекта.

Срок службы системы — 30 лет.

Таким образом, разработанная новая система КТС КРБ для вновь строящихся АЭС обладает существенными преимуществами по сравнению с эксплуатируемыми в настоящее время.

В систему могут быть включены дополнительные блоки детектирования:

• блок детектирования суммы инертных радиоактивных газов (ИРГ) с диапазоном 103 — 109 Бк/м3;

• блок детектирования ОА аэрозолей с диапазоном 2 · 10-2 — 104 Бк/м3;

Состав комплекса технических средств (КТС) системы АСРК-01Р.

• блок детектирования ОА йода с диапазоном 2 · 10-1 — 105 Бк/м3;

• спектрометрический блок детектирования с возможностью выделения до 4 реперных нуклидов;

• блок детектирования γ-излучения с диапазоном 10-2 — 104 Зв/ч, рабочая температура до 150 °С, давление до 2 · 106 Па.

Система АСРК-01РБ, выполненная на основе КТС КРБ, может дополняться принципиально новыми техническими средствами, разрабатываемыми ГП НИТИ им. А.П. Александрова. Это три типа автоматических многоточечных спектрометрических мониторов для контроля состава и активности радионуклидов в теплоносителе, воздухе рабочих помещений, газоаэрозольных выбросах и водных средах.

Технические характеристики спектрометрических мониторов.

Спектрометрический монитор МАРС-010СГГ по контролю объемной активности и состава инертных радиоактивных газов:

диапазон измерения — 3,7 · 102 — 3,7 · 1012 Бк/м3;

диапазон энергий фотонов — 60 кэВ — 3 МэВ;

основная погрешность — ± 25 %;

рабочая температура — от +5 до +45 °С.

Спектрометрический монитор МАРС-011СЖГ для контроля состава и активности радионуклидов в водных сбросах:

диапазон измерения — 2 · 102 — 2 · 107 Бк/м3;

диапазон энергий фотонов — 60 кэВ — 3 МэВ;

основная погрешность — ± 25 %;

рабочая температура — от +5 до +45 °С.

Разнообразие объектов ЯТЦ (не только АЭС), на которых применяется аппаратура радиационного контроля при создании информационно-измерительных систем, выдвинуло на передний план требование системного подхода, основанного на агрегатно-модульном принципе построения систем. Такой подход создал основу для разработки аппаратно-методического комплекса и позволил решить основные измерительные задачи на основе типовых технических решений. Модульный принцип обеспечил построение гибких объектно-ориентированных информационно-измерительных систем на основе использования типового комплекса технических средств радиационного контроля КТС КРБ.

Наиболее объемно и доступно для пользователя, благодаря одновременно разработанным отраслевым стандартам, этот принцип был применен в разработке по теме «Орешник» [61, 98]. В разработке «Орешник-Т» — КТС КРО этот принцип получил дальнейшее развитие с использованием современных информационных технологий, как в случае КТС КРБ, на основе которого создаются современные системы радиационного контроля для АЭС.

В табл. 27 представлены сравнительные технические характеристики трех комплексов, на основе которых создавались и создаются автоматизированные системы радиационного контроля КАТСРК «Орешник», КТС КРО «Орешник-Т» и УМКС-99 «Атлант» [61, 62, 98, 99, 107 — 110].

Остановимся на описании системы КАТСРК «Орешник», который был создан в конце семидесятых — начале восьмидесятых годов. Отдельные узлы и блоки системы, в основном первого уровня, выпускаются промышленностью до настоящего времени.

Система ТС «Орешник» была построена по трехуровневой схеме:

• первый уровень включает в себя блоки и устройства детектирования, отвечающие за первичное преобразование контролируемых физических величин в унифицированный электрический сигнал, пригодный для передачи на другие уровни системы. БД могут включать в себя узлы подготовки проб, детекторы излучения, узлы питания, аналоговой обработки сигнала, импульсные фильтры, выходные узлы и узлы управления и контроля работоспособности. В состав устройств первого уровня входят и средства местной сигнализации БСР-19П;

• во второй уровень ТС включены групповые преобразователи (БПХ-04, УИМ-90), обеспечивающие нормализацию сигналов с блоков детектирования и преобразование их в унифицированный информационный сигнал, подготовленный для передачи ТС третьего уровня. Устройства второго уровня объединяют сигналы от четырех до 32 блоков детектирования, расположенные территориально вблизи данного блока. Помимо нормализации информационного сигнала они обеспечивают питанием блоки детектирования, принимают с верхнего уровня управляющие сигналы и передают их на БД, кроме того, устройства второго уровня управляют работой местной цветозвуковой сигнализации;

Таблица 26.Базовый состав технических средств АСРК01РБ

• третий уровень объединяет устройства обработки, накопления и отображения полученного информационного массива (УИ-05П, УИ-07П, СП-1). Устройства третьего уровня предназначены для накопления, обработки и отображения информации со всех точек контроля, документирования результатов, вывода информации на устройства отображения и управления работой системы в целом.

Таблица 27.Информационноизмерительные автоматизированные системы РК, выполненные на основе типового комплекса технических средств

Состав технических средств 1-го уровня обеспечивал решение основных измерительных задач при радиационном контроле. В него входили БД и УД мощности дозы и потока гамма (БДРС-01П, БДЭГ-13П) и нейтронного (УДБН-02Р) излучений; объемной активности бета- и бета-гамма-излучающих газов (включая тритий) — БДБГ-02П, БДГБ-13П; альфа- и бета-активности аэрозолей — БДАА-01П, БДАС-03П, УД объемной альфа-, бета- и гамма-активности жидкости — УОК-12П, УОК-13П, БДЖА-02П, УДЖБ-01П, а также комплект УД для газовоздушных выбросов аэрозолей и паров иода УДАБ-02П, УДАГ-02П, УДАС-03П, УДАГ-03П, УДАБ-03П (табл. 28).

Все БД и УД имели стандартизованные параметры выходных сигналов, питающих напряжений и сигналов управления, что обеспечивало их полную взаимозаменяемость при соединении с периферийными модулями — групповыми преобразователями (БПХ-04 и УИМ-90).

Таблица 28. Блоки и устройства детектирования КАТСРК «Орешник»

Системы радиационного контроля, построенные на основе технических средств КАТСРК «Орешник-Т» с использованием отдельных блоков и устройств детектирования, успешно эксплуатируются на предприятиях ЯТЦ до настоящего времени, в т.ч. в ГНЦ «НИИАР», СХК, ГХК, ПО «Маяк» и на других объектах.

В качестве примера в табл. 29 приведен перечень систем, которые используются в ГНЦ «НИИАР» [111 — 113].

За прошедшие 20 с лишним лет кардинально изменились элементная база приборостроения, идеология построения ИИС, средства вычислительной техники, средства передачи информации и т.д. Эти обстоятельства вынудили приступить к модернизации, а по существу — созданию новой системы с теми же функциями, но на современном техническом уровне.

Концепция постепенного наращивания мощностей технических средств в системах радиационного контроля обуславливает необходимость выпуска широкой номенклатуры устройств (включая «интеллектуальные») как самостоятельных изделий. Именно на это направлены усилия разработчиков ТС радиационного контроля в настоящее время.

Комплекс технических средств КТС КРО («Орешник-Т») предназначен для построения на его компонентах измерительно-информационных систем контроля технологических процессов по радиационным параметрам и контроля радиационной обстановки на различных предприятиях атомной промышленности, в том числе на предприятиях, где осуществляется хранение, переработка радиоактивных материалов, их применение, а также проводится захоронение радиоактивных веществ [39, 62, 107 — 109].

Информационно-измерительные системы контроля технологических процессов и контроля радиационной обстановки (ИИС КРО), выполненные на компонентах комплекса обеспечивают измерение величин, характеризующих радиационную обстановку в различных точках на территории предприятия, получение необходимой и достоверной информации о значениях и динамике изменения параметров радиационной обстановки, а также сравнение этих параметров с установленными нормами (порогами). Эти системы могут быть расширены за счет любых других устройств, в которых передача данных проводится в соответствии с принятым протоколом обмена.

Кроме того, указанные компоненты могут быть использованы для построения локальных приборов, осуществляющих измерение величин, характеризующих радиационную обстановку.

Комплекс КТС КРО («Орешник-Т») содержит:

• устройства нижнего уровня — устройства детектирования (УД), являющиеся первичными измерительными преобразователями, осуществляющие преобразование параметров ионизирующего излучения в соответствующие им нормируемые электрические сигналы;

• устройства верхнего уровня — устройство накопления и обработки (УНО-220П), осуществляющее циклический опрос устройств детектирования, управление их работой и считывание результатов измерений, и рабочее место оператора (РМО), выполненное на базе персонального компьютера (ПК), которое анализирует, архивирует, представляет оператору накопленную информацию и позволяет оператору управлять работой системы;

• дополнительные устройства (световой сигнализации УСС, звуковой сигнализации УЗС и др.).

Кроме того, с использованием промышленно-выпускаемых изделий будут выполнены каналы обмена данными:

• по выделенной телефонной линии (модемная связь);

• по радиоканалу.

Перечень основных устройств детектирования, входящих в состав комплекса, и их основные характеристики приведены в табл. 30. Значения основной погрешности измерений указаны при доверительной вероятности 0,95.

Для размещения группы блоков контроллеров могут быть использованы промышленные шкафы типа АЕ фирмы «RITTAL» (ФРГ), изготовленные из нержавеющей стали, обеспечивающие степень защиты IP56 и имеющие отверстия для ввода кабелей, закрывающиеся проводящими и снаружи обработанными уплотнительными прокладками (что обеспечивает одновременно степень защиты и электромагнитную совместимость изделия). Подобные шкафы в состав комплекса не входят и их выбор определяется числом контроллеров в группе.

Таблица 29.Автоматизированные системы РК и КГО ГНЦ «НИИАР»

Шкафы типа АЕ фирмы «RITTAL» (ФРГ) выпускаются с достаточно большой номенклатурой типоразмеров. Например, для размещения 16 блоков контроллера может быть использован шкаф размерами 600×760×210 мм.

Защита устройства УНО-220П от проникновения пыли и капель воды, а также от электромагнитных помех должна обеспечиваться промышленным шкафом, который в состав комплекса не входит. Размещение устройства УНО-220П в промышленном шкафу возможно в двух вариантах:

• автономно;

• совместно с промышленным персональным компьютером, на котором выполняется РМО.

При автономном исполнении и при питании устройства УНО-220П от сети бесперебойного питания может быть также использован, например, шкаф типа АЕ из нержавеющей стали, выпускаемой фирмой «RITTAL» (ФРГ). Если сеть бесперебойного питания отсутствует, в этот же шкаф может быть помещен и блок бесперебойного питания, предназначенный для размещения в 19 дюймовых шкафах или стойках.

Если устройство УНО-220П и промышленный ПК располагаются совместно, и имеется сеть бесперебойного питания, то может быть использован, например, компьютерный шкаф на базе EL (степень защиты IP54, защита от электромагнитных помех не оговорена), также выпускаемый фирмой «RITTAL» (ФРГ). В этом же шкафу может располагаться и блок бесперебойного питания устройства УНО-220П и ПК, если сеть бесперебойного питания отсутствует.

Перечень нормативных документов, требованиям которых удовлетворяет система КТС КРО «Орешник-Т» — ГОСТ Р 50746-95, ГОСТ 8.383-80, ГОСТ 9.014-78, ГОСТ 12.1.004-91, ГОСТ 12.1.019-79, ГОСТ 12.1.030-81, ГОСТ 12.2.007.0-75, ГОСТ 27.002-89, ГОСТ 27.003-90, ОСТ 25 381-86, РМ 25 446-87, РД 25 818-87, РД 95 988-90, РД-03-36-97, РД 08042489, СП2.6.1.758-99, ОСП 72/87, ОПБ 88/97, НП-002-97, ПБЯ РУ АС-89, ПРБ АС-89, ПУЭ, ПНАЭ Г-1-028-91, ПНАЭ Г-5-006-87.

Таблица 30.Перечень основных устройств детектирования, входящих в комплекс КТСКРО («ОрешникТ»), и их основные характеристики

Установка «Атлант» (Многоканальная установка радиационного контроля УМКС-99) — предназначена для построения автоматических систем радиационного контроля (АСРК) на радиационно-опасных объектах и оповещения персонала об отклонениях от нормальных условий их эксплуатации (табл. 27) [39, 110].

В комплект поставки входят блоки детектирования гамма- и нейтронного излучения БДМГ-100 и БДМН-100, блок обработки и передачи информации БОП, установка детектирования объемной активности альфа- и бета-излучающих радионуклидов, содержащихся в воздухе в виде аэрозолей, установка детектирования объемной бета-активности инертных газов, блок аварийной сигнализации БАС-01, промежуточный пульт индикации ППИ-ПК и центральный пульт управления ЦПУ.

Технические характеристики блока детектирования БДМГ-100:

• регистрируемое излучение…………………………………………………………………………… гамма

• детектор…………………………………………………… газоразрядные счетчики СБМ-20 (3 шт.)

• диапазон измерения мощности дозы  мкЗв/ч………………………………….. 0,1 — 107

• диапазон регистрируемых энергий, МэВ……………………………………………………. 0,05 — 3

• погрешность измерения мощности дозы (по 137Cs), %, не более………………………….. 20

• диапазон рабочих температур, «С……………………………………………………………. -30 ÷ +50

• габаритные размеры, мм………………………………………………………………. Æ 40, длина 180

• масса, г……………………………………………………………………………………………………………. 500

Технические характеристики блока детектирования БДМН-100:

• регистрируемое излучение…………………………………………………………………….. нейтроны

• диапазон измерения мощности эквивалентной дозы, мкЗв/ч……………………… 0,1 — 105

• диапазон регистрируемых энергий, эВ………………………………………………….. 0,025 — 107

• погрешность измерения (по Pu-Ве), %, не более………………………………………………… 25

• диапазон рабочих температур, °С……………………………………………………………. -30 ÷ +50

• габаритные размеры, мм…………………………………………………………………… 386×256×250

• масса, кг…………………………………………………………………………………………………………. 10,1

АСРК на базе УМКС-99 состоит из двух уровней вертикальной иерархии: уровня измерительных устройств (ИУ) и уровня информационной сети. Измерительные устройства имеют два независимых интерфейса связи. Ethernet(основной) и RS-232 (485) (вспомогательный). Измерительные устройства подключаются к информационной сети в произвольном порядке и в произвольных местах. Количество ИУ в одном сегменте сети может достигать 500 шт. Максимальное расстояние между ИУ и коммутационными устройствами сети составляет 100 м. Информационная сеть представляет собой локальную вычислительную сеть стандарта Ethernet IEEE 802.3

Помимо блоков детектирования БДМГ-100 и БДМН-100 для непрерывного контроля радиационной обстановки применяют сцинтилляционный блок детектирования БДВГ-100, предназначенный для измерения мощности дозы  и плотности потока гамма-квантов, сцинтилляционные блоки детектирования БДЗА-100, БДЗА-100Б и БДЗА-100М, предназначенные для измерения плотности потока альфа-частиц, сцинтилляционный блок детектирования БДЗБ-100, блоки детектирования с использованием сцинтилляционного детектора и газоразрядного счетчика СИ-8Б БДЗБ-100Л и с использованием только 2 газоразрядных счетчиков СБТ-10А, которые предназначены для измерения плотности потока бета-частиц.

Структурная простота, большой диапазон измерения и простота в настройке и эксплуатации являются отличительной особенностью установки «Атлант». Она используется в малоканальных системах АСКРО как часть ЕГАСКРО.

Создание отдельных систем или подсистем (радиационной безопасности радиационно-опасных объектов и АЭС) контроля радиоактивных выбросов и сбросов был основан на использовании технических средств «Орешник» или АКРБ АЭС.

В настоящее время на отечественных АЭС, зарубежных АЭС и других радиационно-опасных объектах широко используется Установка контроля газо-воздушных выбросов «Калина». Выпускаются ее модификации РКС-02 РКС-03 и РКС-07П, выполненные с использованием технических средств «Орешник» и которые прошли Государственные испытания.

В Установке радиометрической РКС-07П для измерения ОА радиоактивных газов и паров иода-131 в газоаэрозольных выбросах промышленных реакторов и атомных электростанций обработка и вывод результатов измерений проводится с помощью устройств представления информации и УНО-66Н.

Регистрация, измерение и вывод информации осуществляется в 8 каналах. Каналы подразделяются на совмещенные и размещенные (табл. 31).

В новых комплексах технических средств расширяется номенклатура БД и УД и устройств обработки информации, на основе которых могут проектироваться более совершенные устройства для контроля выбросов и сбросов.

Для современных комплексов технических средств (табл. 26 и табл. 30) большой интерес представляют новые типы БД и УД, более чувствительные и адаптированные к различным условиям эксплуатации

2.5.2. Автоматизированные малоканальные установки и системы.

Они необходимы для обеспечения радиационной безопасности «небольших», в том числе передвижных объектов, а также для решения специальных задач (например, выявления и контроля денежных купюр, других предметов, загрязненных радиоактивными веществами). К таким ТС можно отнести Установки КДУ-8, СРК-2М-36, СРК «Барьер» и ДКГ-01 «Сталкер» [39].

К ранним разработкам относится установка КДУ-8, которая оценивается потребителями как установка универсальная и надежная в эксплуатации, в том числе в тяжелых климатических условиях СРК-2М-36. СРК «Барьер» и ДКГ-01 «Сталкер» относятся к более поздним современным разработкам и предназначены как для решения специальных задач, так и задач радиационного контроля на объектах.

В табл. 32 представлены основные технические характеристики рассматриваемых автоматизированных малоканальных установок (систем) радиационного контроля.

Установка КДУ-8 предназначена для непрерывного автоматического контроля радиационной обстановки, сигнализации и формирования сигналов-советов при нарушении нормальной контролируемой обстановки путем сбора и обработки информации от блоков и устройств детектирования. Установка является многофункциональным средством, компонуемым под различные, в том числе подвижные, объекты и имеет 7 модификаций.

При максимальной комплектации установка содержит 13 типов блоков и аппаратурных средств, 8 типов блоков детектирования с суммарным количеством до 54 единиц.

Блоки детектирования установки КДУ-8 обеспечивают измерение:

• мощности поглощенной (в воздухе) дозы, Гр/ч:                               8,7 · 10-7 — 8,7 · 10-4;

                                                                                                           8,7 · 10-4 — 8,7 · 10-1;

                                                                               8,7 · 10-4 — 8,7 (два — четыре канала);

• ОА воды, Бк/м3 —                                                                                   3,7 · 107 — 3,7 · 1010;

• ОА бета-активных аэрозолей, Бк/м3 —                                                                  105 — 109;

• поглощенной (в воздухе) дозы, Гр —              8,7 · 10-3 — 87; 10 — 2000 (восемь каналов).

Система непрерывного контроля СРК-02М-36 предназначена для организации радиационного контроля помещений, в которых проводятся работы с радиоактивными веществами (источниками) и радиационными установками [39]. Система радиационного контроля СРК-02М-36 обеспечивает непрерывный мониторинг уровня радиационного фона в зонах расположения блоков детектирования и сигнализацию о превышении уровня радиационного фона установленного порога.

Состав средств системы СРК-2М-36:

• центральный пульт,

• блоки детектирования мощности фотонного излучения (4 типа);

• интеллектуальный сигнализатор БСР-35М.

Число точек контроля — до 36, канал связи — RS-485 или вывод на принтер с системой команд «EPSON» через адаптер «Citronic».

Таблица31. Основные технические характеристики БД и УД установки РКС07П

Таблица32.Автоматизированные малоканальные установки (системы) радиационного контроля

Диапазон измерения мощности дозы фотонного излучения:

• БДРГ-46П, БДИГ-31П2 — 0,01 — 1 мР/ч;

• БДРГ-46П1 — 0,1 — 10 мР/ч;

• БДРГ-46П2 — 1 — 1000 мР/ч.

Система радиационного контроля СРК «Барьер» предназначена для:

• измерения мощности эквивалентной дозы гамма-излучения (1 — 106 мкЗв/ч);

• измерения плотности потока бета- и альфа-излучения с загрязненных поверхностей;

• сохранения в памяти результатов измерений мощности эквивалентной дозы и спектров источников гамма-излучения и обеспечения сигнализации о превышении уровня нормального гамма-фона на контролируемом объекте.

В случае пересечения границ контролируемого объекта с источниками повышенной активности сигнализация предупреждает о попытке выхода персонала или другого лица за границы зоны. Наличие памяти и современного интерфейса обеспечивает документирование данных о радиационной обстановке на контролируемом объекте.

Система ДКГ-01 «Сталкер» предназначена для мониторинга радиационной обстановки с устройством определения геодезических координат с помощью спутниковой системы GPS [39].

Система обеспечивает:

• измерение мощности эквивалентной дозы гамма-излучения с одновременным определением геодезических координат в точке проведения измерения;

• сохранение в памяти результатов измерения мощности эквивалентной дозы гамма-излучения и геодезических координат и передача их на компьютер;

• представление и вывод сохраненных в памяти результатов в графическом виде, нанесение на карту и обработка стандартными ГИС.

В состав системы входит измерительный пульт, блок детектирования и навигационная система.

В целом система компактна, отвечает современным требованиям обработки и представления информации. Она может применяться как переносное или автомобильное устройство в зависимости от типа комплектации блоков детектирования, в которых используются счетчики СБМ-20 (2 счетчика) или СБМ-30 (10 счетчиков), или сцинтилляционный блок детектирования ДГ-02 на основе кристалла CsI (45×50 мм). Диапазон определяемой мощности дозы фотонного излучения — 0,1 — 1000 мкЗв/ч, при энергии фотонов 0,05 — 3 МэВ.

К этой аппаратуре может быть отнесен Дозиметр «Атлант- [39].

2.5.3. АСКРО объектов.

Автоматизированные системы контроля радиационной обстановки (АСКРО) объектов — промплощадки, санитарно-защитной зоны, зоны наблюдения АЭС и т.д. включают в себя посты радиационного контроля на местности (ПК), соединенные средствами связи с центральным постом контроля [114 — 129]. В зоне наблюдения радиационно-опасного объекта может быть размещено несколько десятков ПК, непрерывно контролирующих радиационные и метеопараметры. К простейшим АСКРО относится система «Атлант-Р» [39].

В настоящее время разработаны основные принципы и технически реализованы типовые посты контроля для проведения комплексного экологического мониторинга окружающей среды. На их основе создана объектовая автоматизированная система контроля радиационной обстановки (АСКРО) для промплощадки, санитарно-защитной зоны и 30-километровой зоны наблюдения вокруг АЭС [114].

Разработаны следующие типы ПК:

ПКГ — для измерения мощности дозы гамма-излучения с блоками детектирования БДМГ-08Р (от 10-6 до 103 Р/ч), в том числе до 5 выносных БД,

ПКГМ— для измерения мощности дозы и метеопараметров (скорость и направление ветра, температура, атмосферное давление, относительная влажность воздуха);

ПКЖ — для измерения объемной активности жидкости на базе погружного устройства детектирования УДЖГ-22Р (ОА, начиная с 6 · 10-11 Ки/л),

ПКВ — для контроля радиоактивного загрязнения воздуха (ОА аэрозолей — УДАБ-ОЗП, ОА иода — УДАС-02П), а также мощности дозы — БДМГ-08Р-03 (105 — 102 Р/ч).

В ПК использованы блоки и устройства детектирования ионизирующего излучения, разработанные для систем радиационного контроля, рассмотренных выше.

Во всех ПК использованы общие решения, обеспечивающие повышенную надежность и достоверность получаемой информации, живучесть системы, создаваемой на их основе, удобство ее обслуживания:

• оборудование, входящее в состав ПК, монтируется внутри специального защищенного контейнера типа СКЗ-5У (отапливаемые и неотапливаемые);

• каждый ПК имеет собственную систему «жизнеобеспечения», в которую входит освещение, резервное питание, заземление, устройства сигнализации о несанкционированном доступе и пожаре, средства автоматического пожаротушения и при необходимости система поддержания требуемых климатических параметров внутри контейнера;

• каждый ПК передает информацию в центр по двум независимым линиям связи, в качестве которых могут быть использованы проводная связь, радиоканал или телефонная связь;

• в качестве абонентов систем выступают посты контроля, а не отдельные измерительные каналы, входящие в их состав.

На базе перечисленных ПК, первоначально разработанных для АЭС, при их дополнении постами контроля объемной активности искусственных альфа-активных аэрозолей и трития в воздухе, можно создать объектовые АСКРО других радиационно-опасных объектов, а также региональные АСКРО всех уровней.

Таким образом, следующим шагом является создание на базе типовых постов ведомственных объектовых АСКРО подсистем территориального радиационного контроля и региональных систем. Эти системы могут стать низовыми звеньями Единой Государственной автоматизированной системы контроля радиационной обстановки страны (ЕГАСКРО).

АСКРО на базе описанных основных технических средств в настоящее время установлены на нескольких АЭС РФ, в т.ч. на Волгодонской АЭС, и на зарубежных АЭС [128]. Схема использования технических средств АСКРО в системах АСРК представлена на рис. 6.

В АСКРО, обеспечивающих одновременно контроль газовоздушных выбросов, информация на центральный пост контроля поступает с блоков и устройств детектирования, измеряющих ОА аэрозолей и газов в венттрубах АЭС. Для таких АСКРО диапазон измерения мощности амбиентной дозы гамма-излучения в санитарно-защитной зоне и зоне наблюдения от 0,1 до 103 мкЗв/ч, мощности поглощенной дозы на промплощадке АЭС от 10-4 до 104 мГр/ч, объемной активности газов в венттрубах от 2 · 105 до 2 · 109 Бк/м3. Прогнозирование возможных радиационных аварий и других нештатных ситуаций в этом случае может решаться более оперативно и достоверно.

Централизованные посты контроля могут обрабатывать информацию по специально разрабатываемым программам, позволяющим выполнять задачи прогнозирования радиационной обстановки вокруг радиационно-опасного объекта и за его пределами. Математическое и программное обеспечение разработано совместно НИЦ «СНИИП» и НПО «Тайфун».

Вышеописанные системы АСКРО могут охватывать контроль значительных территорий и обрабатывать большой объем информации, передаваемой на центральный пост контроля, для прогнозирования дозовых нагрузок на персонал и население, загрязнения окружающей среды.

— автоматическая телефонная станция (АТС)

— антенно-фидерное устройство (АФУ)

Рис. 6. Система (подсистема) АСКРО в окружающей среде

2.5.4. Индикаторы радиационного фона

Индикаторы радиационного фона (ИРФ) можно условно отнести к техническим средствам так называемых городских, поселковых и др. АСКРО [129 — 130]. Это ТС, которые могут измерять радиационный фон на открытой местности, в зданиях, сооружениях, обеспечивая наглядную информацию для населения о радиационной обстановке.

ИРФ начиналось с законченного одноблочного устройства, включающего БД, устройства обработки информации и информационное табло. Примером может служить ИРФ, параметры которого представлены в табл. 33 в сравнении с параметрами других более интеллектуальных устройств: АСКРО НТЦ «РИОН» и др. представителей более современных интеллектуальных ТС ЕГАСКРО в системе «Рефлекс» Минатома РФ [124]. К ним может быть также отнесена АСКРО «Атлант-Р».

Современные информационные измерители (индикаторы) радиационного фона выполнены с использованием микропроцессоров, имеют число каналов более 1 — 2 и современные средства передачи информации (телефонные модемы, радиомодемы, сотовую телефонную сеть).

В основном измерительном блоке, совмещенном с индикаторным табло, могут размещаться несколько дополнительных типов датчиков (температуры, влажности), устройства памяти, устройства отображения информации типа «бегущая волна».

АСКРО НТЦ «РИОН» занимает особое место в этом классе ТС для АСКРО. Он адаптирован к системе «Рефлекс» Минатома РФ и ЕГАСКРО. В настоящее время на основе этого комплекса создано несколько региональных и городских систем, в том числе, в Санкт-Петербурге и Ленинградской области. Достаточно широко был использован ИРФ-03 в Москве и Московской области (около 50 точек), на основе которого МосНПО «Радон» и службами МЧС по Московской области была создана система радиационного мониторинга этого крупного промышленного мегаполиса, а также аналогичные системы в других городах и АЭС.

2.5.5. Программное обеспечение автоматизированных систем радиационного контроля

Радиационные объекты I и II категорий согласно п. 3.1 ОСПОРБ-99 должны использовать стационарные автоматизированные технические средства — автоматизированные системы. Учитывая широкое использование ЭВМ и большой круг решаемых задач, архивирования полученных данных и выдачу управляющих советов и т.п., на современном этапе автоматизированные системы должны иметь соответствующее программное обеспечение.

В полной мере автоматизированные системы должны обеспечивать контроль, регистрацию, отображение, сбор, обработку, анализ хранения полученной информации и выдачу отчетной информации.

Достаточно большой объем фиксируемой и сохраняемой информации необходим также для решения следующих задач:

• статистическая отчетность перед органами государственного контроля;

• расчет годовых эффективных доз внутреннего облучения персонала;

• отслеживание динамики изменения всех контролируемых радиационных параметров, характеризующих состояние радиационной обстановки;

• фиксация контролируемых радиационных параметров, характеризующих выбросы и сбросы с целью оценки и анализа загрязнения воздушной и водной среды;

• фиксация контролируемых радиационных параметров, характеризующих выбросы и сбросы с целью оценки и анализа загрязнения воздушной и водной среды;

• регистрация уровня загрязнения объектов внешней среды (при необходимости, например, после аварии).

Необходимый объем информации, определяемый требованиями статистической отчетности, согласно ОСПОРБ-99, хранится в течение 50 лет. Кроме того, должно учитываться формирование необходимых данных, которые должны передаваться в АСКРО СКЦ, АТЦ ДБЧС Министерства и ЕГАСКРО России и др.

Таблица 33.Технические средства для городских АСКРО

К настоящему времени еще не определился порядок разработки программного обеспечения объектовых автоматизированных систем, которые не являются типовыми, а отражают особенности данного объекта. Их проектирование ведется на базе комплектов технических средств типа КТС КРО.

Итак, встает вопрос: кто и на каком этапе внедрения сложных автоматизированных систем на объекте должен разрабатывать программное обеспечение, которое бы позволило решить вышеперечисленные задачи получения информации.

Целесообразно рассмотреть несколько путей выбора этапа, на котором возможно проводить работы по программному обеспечению, и какими силами можно выполнить этот этап.

Одна из возможных схем взаимодействия заказчика, разработчика автоматизированных ТС, проектанта автоматизированных систем и завода-изготовителя при разработке программного обеспечения системы и внедрения системы представлена на рис. 7. Эта схема предполагает разработку программного обеспечения разработчиками ТС, поставку системы также через разработчика и повышение роли авторского надзора разработчика при установке и эксплуатации системы. Эта схема не предполагает поставки ТС собственно через разработчика.

ТС системы с завода-изготовителя должны поставляться непосредственно на предприятие заказчика.

Предлагаемую схему целесообразно обсудить с заинтересованными представителями (заказчик-проектант). Причем было бы также целесообразно этот или другой вариант проектирования программного обеспечения объектовых автоматизированных систем закрепить организационным документом. Последнее позволило бы сосредоточить специалистов в одном из звеньев этой схемы (разработчика, проектанта или заказчика) и повысить уровень работы в целом по созданию автоматизированных систем радиационного контроля.

При обеспечении радиационного, в том числе дозиметрического, контроля необходимо иметь полную информацию о рабочих местах радиационно-опасного объекта, обеспечить оптимальную схему размещения блоков детектирования стационарных систем радиационного контроля, точек контроля переносными приборами и осуществление пробоотбора. Методические материалы, в том числе программное обеспечение, должны определять порядок и методы проведения и интерпретации всех видов выполняемых радиационных измерений как в нормальной, так и в аварийной обстановках.

Номенклатура и количество приборов и систем, используемых при радиационном контроле, должны быть достаточны для использования в нормальных и аварийных ситуациях и получения наиболее полной информации о радиационной обстановке и облучении персонала. Размещение блоков детектирования, приборов, систем должно предусматривать вероятные аварийные ситуации, при которых должна быть реализована возможность дистанционного контроля. Обобщенная схема обеспечения радиационного (дозиметрического) контроля приведена на рис. 8.

Глава 3. ВОЗМОЖНЫЕ ПУТИ И МЕХАНИЗМЫ ОБЕСПЕЧЕНИЯ ПРЕДПРИЯТИЙ ОТРАСЛИ СОВРЕМЕННОЙ АППАРАТУРОЙ РАДИАЦИОННОГО КОНТРОЛЯ

Анализ парка аппаратуры радиационного контроля на предприятии отрасли показал, что в эксплуатации находятся приборы, системы и комплексы, около 60 % которых было выпущено более 10 лет назад. К таким приборам, например, относятся СРП-88 и даже более старые — СРП-68, дозиметры ДРГЗ-03, ДРГ-05 (М1), ДКС-04 («Стриж»), ДРГ-01Т, комплекты дозиметров ДК-02 и КДТ-02 (М), а также другие приборы.

Вместе с тем, гарантийная наработка газоразрядных счетчиков составляет 109 — 1010 имп., а гарантийное хранение около 4-х лет. Некоторые сцинтилляционные детекторы, например, NaI (TI), органические сцинтилляторы со временем теряют свои оптические свойства и требуют замены. При длительной эксплуатации приборов часто из-за окисления и других причин нарушается проводимость контактов, ухудшается изоляция, что приводит к отказам в разъемах и печатных платах, неработоспособности элементов электронных схем, выходу из строя табло, отказу источников питания. Все это приводит к отказам приборов иногда в нужные, ответственные моменты, например, в экстремальных условиях ликвидации последствий радиационных аварий.

Рис. 7. Одна из возможных схем взаимодействия Заказчика, разработчика комплекса ТС системы, проектанта автоматизированной системы и заводаизготовителя в части разработки программного обеспечения и поставки ТС системы.

Однако ремонт этих приборов в заводских условиях усложнен тем, что они уже давно сняты с производства, сняты с производства и многие комплектующие изделия. Устарело программное обеспечение и средства вычислительной техники и документирования. Ремонт приборов в кустарных условиях на месте без квалифицированных кадров и последующих испытаний и поверки может привести к существенным погрешностям при проведении дальнейших измерений.

Имеется еще одна причина применения устаревшей аппаратуры. Она связана с тем, что специалисты в области ядерного приборостроения в некоторых новых разработках исключают вовсе или неполностью применяют режимы работы приборов, средства отображения информации, проверенные «жизнью», удобные для выполнения измерительных задач и восприятия операторами-пользователями и неоправданно широко используют цифровые дисплеи. Однако для оперативной работы, поиска источников излучения и радиоактивных аномалий более удобна аналоговая шкала, в том числе стрелочные приборы, или цифро-аналоговые дисплеи, необходимы дополнительные средства аудио-визуальной сигнализации, в том числе светодиодные сигнализаторы, предупреждающие надписи, возникающие на табло, наушники, вибросигнализаторы на руки или других частях тела и т.д.

Источник

Рейтинг
Ufactor
Добавить комментарий