Что относится к поражающим факторам радиационных аварий

КОНТРОЛЬНАЯ РАБОТА ПО БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ

«Поражающие факторы, характерные для аварий на радиоактивно-опасных объектах. Загрязнение окружающей среды, связанное с интенсификацией сельскохозяйственного производства»

студент Паутов И.В. гр. 672

Введение……………………………………………………………………….3

1. Поражающие факторы, характерные для аварий на радиоактивно-опасных объектах………………………………………………………….4

2. Загрязнение окружающей среды, связанное с интенсификацией сельскохозяйственного производства……………………………………9

Заключение……………………………………………………………………11

Список литературы…………………………………………………………..12

ВВЕДЕНИЕ

Загрязнение окружающей среды в последнее время приобретает катастрофический характер. Особые опасения вызывают радиоактивно-опасные объекты, поскольку любая, даже незначительная авария на них может привести к полному разрушению природного баланса на конкретной территории. Однако, и на первый взгляд безопасные отрасли хозяйствования, например, сельское хозяйство, могут наносить значительный урон человеку и природе.

Целью данной работы является установление особенностей характеризующих поражающие факторы, характерные для аварий на радиоактивно-опасных объектах и загрязнения окружающей среды, связанные с интенсификацией сельскохозяйственного производства.

В связи с поставленной целью в данной работе раскрываются следующие задачи :

Дать определение радиоактивно-опасного объекта и радиационной аварии;

Дать характеристику радиационных излучений;

Установить основные поражающие факторы характерные для аварий на радиоактивно-опасных объектах;

Представить характеристику интенсификации сельскохозяйственного производства;

Определить последствия интенсификации.

Актуальность данной работы заключается в необходимости постоянного обновления и закрепления гражданином знаний об основах безопасности жизнедеятельности.

1. ПОРАЖАЮЩИЕ ФАКТОРЫ, ХАРАКТЕРНЫЕ ДЛЯ АВАРИЙ

НА РАДИОАКТИВНЫХ ОБЪЕКТАХ

1. Поражающие факторы, характерные для аварий на радиоактивно-опасных объектах

К радиационно-опасным объектам относятся атомные электростанции и реакторы, предприятия радиохимической промышленности, объекты по переработке и захоронению радиоактивных отходов и т.д.

В 26 странах мира на АЭС насчитывается 430 энергоблоков. Они вырабатывают электроэнергии: во Франции –75%, в Швеции – 51%, в Японии – 40%, в США – 24%, в России – 12%. У нас работает 9 АЭС, имеющих 29 блоков.

Радиационная авария — это нарушение пределов безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Радиоактивные излучения не имеют запаха, цвета или других внешних признаков. Их обнаружение возможно лишь с помощью специальных приборов. Радиоактивное заражение вызывается воздействием альфа-, бета- и гамма ионизирующих.излучений и обуславливается выделением при аварии непрореагированных элементов и продуктов деления ядерной реакции (радиоактивный шлак, пыль, осколки ядерного продукта в источнике аварии), а также образованием различных радиоактивных материалов и предметов (в частности грунта) в результате их облучения (наведенная активность).

Характеристика радиоактивных излучений

Таблица 1

Глобальное загрязнение окружающей среды техногенными радионуклидами было обусловлено атмосферными ядерными взрывами, проводившимися в 1954–1980 гг. в процессе испытаний ядерного оружия на полигонах планеты. Дополнительное радиоактивное загрязнение объектов окружающей среды имело место на некоторых территориях Европейской территории России (ЕТР) в 1986 г., вследствие радиационной аварии на Чернобыльской АЭС, и Азиатской территории России (АТР): в 1957 г., вследствие радиационной аварии на ПО “Маяк”, расположенном в Челябинской области, и в 1967 г. из-за ветрового выноса радионуклидов с обнажившихся берегов оз. Карачай, куда сливались жидкие радиоактивные отходы этого предприятия. Кроме того, источниками локального радиоактивного загрязнения окружающей среды являются некоторые предприятия ядерно-топливного цикла, такие как Сибирский химический комбинат в Томской области, Красноярский горно-химический комбинат, ПО “Маяк” в Челябинской области и некоторые другие.

Контроль радиоактивного загрязнения объектов окружающей среды на территории России осуществляется сетью радиационного мониторинга (СРМ) Росгидромета (стационарная сеть из 1312 пунктов). Анализ всей совокупности экспериментальных данных показал, что в 2003 г. радиационная обстановка на территории Российской Федерации была спокойной и по сравнению с 2002 г. существенно не изменилась (табл. 2).

Таблица 2

Радиоактивное загрязнение окружающей среды на территории России в 1996–2003 гг.

П р и м е ч а н и е: ∑β – концентрации и выпадения суммы β-активных радионуклидов техногенного и естественного происхождения; ДОА нас – допустимая объемная активность радионуклида в воздухе для населения по НРБ-99; УВ – уровень вмешательства для населения по НРБ-99; * – данные за три квартала 2002 г.; 1 Бк/м 3 = 2,7×10 –11 Ки/м 3 .

Под влиянием ионизирующих излучений в организме человека возникают биологические процессы, приводящие к нарушению жизненных функций различных органов (главным образом органов кроветворения, нервной системы, желчно-кишечного тракта и др.) и развитию лучевой болезни. Человек, находящийся на загрязненной территории подвергается: внешнему облучению из проходящего радиоактивного облака и радиоактивных веществ, осевших на местности; контактному облучению кожных покровов при попадании на них радиоактивных веществ; внутреннему облучению за счет вдыхания загрязненного воздуха и при употреблении загрязненных продуктов питания и воды.

При авариях на радиоактивно-опасном объекте характерно, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий, стронций), цезий и стронций обладают длительным периодом полураспада. Поэтому резкого спада уровней радиации нет. При ядерном взрыве на радиоактивно-опасном объекте главную опасность представляет внешнее облучение (90 – 95% от общей дозы). При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.

Меры защиты

Быстро защитить органы дыхания средствами индивидуальной защиты: противогазом, респиратором, а при их отсутствии — ватно-марлевой повязкой, шарфом, платком, полотенцем и т.д., смоченными водой. Закрыть окна и двери, отключить вентиляцию, занять место вдали от окон, веранд, балконов, включить радио, телевизор и ждать указаний по дальнейшим действиям. Продукты питания укрыть в полиэтиленовых мешках. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, шкафы, кладовки. Не употреблять в пищу растительные и животные продукты, заготовленные после аварии. Приготовиться к возможной эвакуации. Собрать документы, деньги, ценные личные вещи, продукты, лекарства, средства индивидуальной защиты (в т.ч. накидки, плащи из синтетических пленок, головные уборы, резиновые сапоги, перчатки и т.д.).

Наличие радиационного фона – одно из обязательных условий жизни на Земле. Радиация также необходима для жизни, как свет и тепло. При небольшом увеличении радиационного фона обмен веществ в организме человека несколько улучшается. При снижении радиационного фона рост и развитие живых организмов замедляется на 30-50 %. При «нулевой» радиации семена растений перестают произрастать, а живые организмы размножаться. Поэтому не следует поддаваться радиофобии – страху перед

радиацией. Естественная радиация является природным компонентом среды обитания человека. Нормальным радиационным фоном считается величина 10-16 мкР/ч, допускается до 20 мкР/ч. Под воздействием естественного радиационного фона человек подвергается внешнему и внутреннему облучению. Источники внешнего облучения – это космическое излучение и естественные радиоактивные вещества, расположенные на поверхности и в недрах Земли, в атмосфере, воде, растениях. Внутреннее облучение человека от естественных источников на 2/3 происходит от попадания радиоактивных веществ в организм с пищевыми продуктами, питьевой водой, вдыхаемым воздухом. Появление источников искусственной радиации способствовало увеличению радиационной нагрузки на человека. Люди периодически подвергаются воздействию излучения от телевизоров, компьютеров, медицинских рентгеновских аппаратов, радиоактивных атмосферных осадков, а также в результате работы АЭС. Весомый вклад в повышение радиационного фона на планете вносят аварии на АЭС. Причины таких ЧС носят разнообразный характер – от ошибок в работе персонала и износа оборудования до злого умысла.

Радиоактивность – самопроизвольное превращение ядер атомов с испусканием ионизирующего излучения.

Основными терминами, характеризующими радиоактивность, являются прони­кающая радиация, ионизирующее излучение и облучение.

Проникающая радиация – поток γ-лучей и нейтронов, выделяющихся из зоны ядерного взрыва и распространяющихся в воздухе во все стороны на многие сотни метров и вызывающих ионизацию атомов среды, через которую они проникают (газа, жидкости, твердого тела, биологической ткани).

Радиоактивное загрязнение – это результат выпадения из облака взрыва огромного количества радиоактивных веществ. Они, выпадая на земную поверхность, создают зараженный участок, называемый радиоактивным следом.

Ионизирующее излучение – излучение, образующее при взаимодействии со средой положительные и отрицательные ионы. Различают:

α-излучение состоит из положительно заряжен­ных α-частиц (ядра атома гелия),в воздухе могут пройти до 9 см, в биологической ткани до 0,06 мм, полностью поглощается листом бумаги;

β-излучепие поток β-частиц (отрицательно заряженных электронов или положи­тельно заряженных позитронов); могут пройти в воздухе до 15 метров, в биологической ткани до 12 мм, в алюминии 5 мм.

γ-излучение – электромагнитное ионизирующее излучение (подобно рентгеновским лучам), испус­каемое при ядерных превращениях, в воздухе распространяется на десятки км. Для защиты необходимо слой бетона толщиной 10 см, свинца 1,8см.

Нейтронное излучение – поток незаряженных частиц (нейтронов) с высокой проникающей способностью.

При воздействии ионизирующих излучений на биологическую ткань происхо­дит разрушение молекул с образованием химически активных свободных радикалов, являющихся пусковым механизмом повреждений внутриклеточных структур и самих клеток. Повреждение клетки приводит либо к ее гибели, либо к нарушению ее функ­ций с сохранением способности к размножению. Поврежденные клетки тела, сохранившие способность к размножению, в отда­ленные сроки могут привести к развитию различных, в том числе опухолевой приро­ды, заболеваний, а поврежденные клетки – к генети­ческим заболеваниям у потомков облученных лиц.

Основными параметрами регламентирующими ионизирующее излучение являются экспозиционная, поглощенная и эквивалентная дозы. Экспозиционная доза — это количественная характеристика поля ионизирующего излучения, измеряется в рентгенах. Поглощенная доза – дозиметрическая величина, измеряемая количеством энергии, поглощенной в единице массы облучаемого вещества. Единицей измерения поглощённой дозы ионизирующего излучения в системе СИ является Грей (Гр) . Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.

Поглощенная доза зависит от вида ионизирующего излучения, т.к. биологическое воздействие на организм гамма-лучей, нейтронов, альфа- и бета-излучений различно по своей активности. Поэтому правильнее пользоваться единицей эквивалентной дозы.

Эквивалентная доза – произведение поглощенной дозы излучения на коэффициент качества излучения, учитывающий неблагоприятные биологические последствия облучения в малых дозах. Эффективная доза – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие тканевые весовые множители.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Они измеряются в зивертах или бэрах. 1 Зв = 100 бэр.

К радиационно опасному объекту (РОО) относят объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

При размещении радиационно опасного объекта должны учитываться факторы безопасности. Расстояние от АЭС до городов с населением 500тыс-1млн человек 30км; 1-2млн 50км; с населением более 2 млн 100км. Также учитываются роза ветров, сейсмичность зоны, её геологические, гидрологические, ландшафтные особенности.

Санитарно-защитная зона – территория вокруг объекта, на которой уровень облучения людей в условиях нормальной эксплуатации объекта может превысить предельно допустимую дозу.

Радиационная авария – событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами.

Причины аварии на РОО: ошибка в проектах, дефекты, износ оборудования, коррозионные процессы, ошибка оператора, ошибка в эксплуатации, прочие причины. Поражение людей происходит за счет проникающей радиации и радиоактивного загрязнения местности.

По радиационным последствиям радиационные аварии делят:

локальная авария, радиационные последствия которой ограничиваются одним зданием или сооружением.

– местная авария, радиационные последствия которой ограничиваются территорией АЭС и при которой возможно облучение персонала и загрязнение зданий и сооружений, находящихся на территории АЭС, выше уровней, установленных для нормальной эксплуатации;

– общая авария, радиационные последствия которой распространяются за границу санитарно-защитной зоны территории АЭС и приводит к облучению населения и загрязнению окружающей среды выше установленных уровней.

Очаг аварии – территория разброса конструкционных материалов аварийных объектов и действия α-, β- и γ-излучений.

Зона радиоактивного загрязнения – местность, на которой произошло выпадение радиоактивных веществ.

При радиоактивном заражении местности образуются зоны разной степени опасности для людей, которые характеризуются как мощностью дозы излучения (уровнем радиации) на неопределенное время после аварии, так и дозой, получаемой за определенное время.

По степени опасности зараженную местность на следе выброса и распространения радиоактивных веществ принято делить на 5 зон:

– зона M (радиационной опасности) – 14 мрад/ч;

– зона А (умеренного заражения) – 140 мрад/ч;

– зона Б (сильного заражения) – 1,4 рад/ч;

– зона В (опасного заражения) – 4,2 рад/ч;

– зона Г (чрезвычайно опасного заражения) – 14 рад/ч.

В соответствии с этим вокруг АЭС установлены следующие зоны:

– санитарно-защитная – радиус 3 км;

– возможного опасного загрязнения – 30 км;

– зона наблюдения – 50 км;

– 100-километровая зона по регламенту проведения защитных мероприятий.

При возникновении радиационной аварии на АЭС с выбросом радионуклидов она протекает по трем фазам.

Ранняя фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления в атмосферу и окончания формирования радиоактивного следа на местности. Доза облучения людей на данной фазе формируется за счет g- и b-излучения РВ, содержащихся в радиоактивном воздухе, а также вследствие ингаляционного поступления в организм РВ, содержащихся в облаке.

Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы от нескольких дней до года после возникновения аварии. Источником облучения являются РВ, попадающие внутрь организма с загрязненными продуктами питания и водой.

Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений жизнедеятельности населения. Источники внешнего и внутреннего облучения те же, что и на средней фазе.

Основные поражающие факторы радиационных аварий:

– воздействие внешнего облучения;

– внутреннее облучение от попавших в организм человека радионуклидов;

– сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;

– комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).

Особенности действия ионизирующего излучения :

– действие излучения на организм неощутимо человеком (у людей нет органов чувств, которые воспринимали бы ионизирующее излучение);

– одним из видов последствий облучения являются так называемые генетические эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

– индивидуальные особенности организма человека проявляются лишь при небольших дозах радиации (чем моложе человек, тем чувствительнее к облучению, начиная с возраста 25 лет, человек становится наиболее устойчивым к облучению);

– чем больше доза облучения, полученная человеком, тем выше вероятность появления у него лучевой болезни;

– видимые поражения кожного покрова, недомогание, характерное для лучевой болезни, появляются не сразу, а лишь спустя некоторое время;

– суммирование доз происходит скрытно (со временем дозы излучения суммируются, что приводит к лучевым заболеваниям).

Радиационные эффекты:

– детерминированные – биологиче­ские эффекты излучения, для которых существует дозовый порог, тяжесть эффекта возрастает с увеличением дозы (острая и хроническая лучевая болезнь, лучевые ожоги и др.);

– стохастические – биологические эффекты излучения, для которых предпо­лагается отсутствие дозового порога их возникновения (злокачественные опухоли и на­следственные заболевания). Вероятность их возникновения пропорциональна величине воздей­ствующей дозы, а тяжесть их проявления от дозы не зависит;

– соматические детерминированные и стохастические биологические эф­фекты излучения, возникающие у облученного индивидуума;

– наследственные стохастические эффекты, проявляющиеся у потомства об­лученного индивидуума.

Общее облучение – относительно равномерное облучение (внешнее или внутреннее) всего тела. Облучение длительностью не более 3 суток – острое или кратковременное; более 4 суток – пролонгированное или хроническое; в случаях, когда полная доза отпускается с перерывами между отдельными фракциями – дробное или фракционированное облучение.

Лучевая реакция – обратимые изменения организма, вызванные равномерным общим облучением в дозах от 0,5 до 1,0 Гр, не требующие специального лечения, исчезающие самостоятельно.

Лучевая болезнь – общее заболевание организма, развивающееся вследствие воздействия ионизирующего излучения. Различают острую лучевую болезнь (ОЛБ), хроническую лучевую болезнь (ХЛБ) различной степени тяжести, лучевую болезнь от внутреннего облучения, лучевые ожоги и другие радиационные поражения.

Острая лучевая болезнь развивается после кратковременного (минуты, часы, до 2-3 суток) внешнего относительно равномерного внешнего облучения в дозах, превышающих 1 Гр; выражается в совокупности поражений органов и тканей. При внешнем относительно равномерном облучении различают:

– Костно-мозговая форма развивается при облучении в дозе 1-10 Гр;

– Кишечная форма ОЛБ возникает после облучения в дозе 10-20 Гр; летальный исход – на 8-10 сутки;

– Токсическая форма ОЛБ возникает после облучения в дозе 20-50 Гр; летальный исход – на 4-7 сутки;

– Церебральная форма ОЛБ возникает после облучения в дозе более 50 Гр; смерть наступает на 1-3 сутки поражения.

Периоды протекания ОЛБ: первичная реакция на облучение, период мнимого благополучия (скрытый), период разгара, период восстановления.

Хроническая лучевая болезнь (ХЛБ) от внешнего облучения возникает при длительном воздействии в дозах более 1 Гр в год в течение нескольких лет. В течение выделяют 4 нечетко разграниченных периода: начальных функциональных нарушений, собственно заболевания, восстановления и последствий.

Доза ионизирующего излучения, не приводящие к острым радиационным поражениям, к снижению трудоспособности:

– однократная (разовая) – 50 рад (0,5 Гр);

– многократные: месячная – 100 рад(1 Гр), годовая 300 рад (3 Гр).

При возникновении ЧС, сопровождающейся ионизирующим излучением, необходимо предпринять все меры, чтобы полученная доза облучения была как можно меньше.

Радиационная обстановка представляет собой совокупность условий, возникающих в результате загрязнения местности, приземного слоя воздуха и водоисточников радиоактивными веществами и оказывающих влияние на аварийно-спасательные работы и жизнедеятельность населения. Оценка радиационной обстановки выполняется путём расчёта с использованием формализованных документов и справочных таблиц (прогнозирование), а также по данным разведки (оценка фактической обстановки).

Международная комиссия по радиационной защите разработала предельно допустимые дозы облучения, принятые в Нормах радиационной безопасности 1999г (НРБ-99/2007г.). Для персонала – 2 бэр в год в среднем за любые последовательные 5 лет, но не более 5 бэр в год. Для населения- 0,1 бэр в год в среднем за любые последовательные 5 лет, но не более 0,5 бэр в год.

Бэр (биологический эквивалент рентгена) – устаревшая внесистемная единица измерения эквивалентной дозы. До 1963 года эта единица понималась как «биологический эквивалент рентгена», в этом случае 1 бэр соответствует такому облучению живого организма данным видом излучения, при котором наблюдается тот же биологический эффект, что и при экспозиционной дозе γ-излучения в 1 рентген. В системе СИ бэр имеет ту же размерность и значение, что и рад – обе единицы равны 0,01 Дж/кг для излучений с коэффициентом качества, равным единице. 100 бэр равны 1 зиверту. Поскольку бэр достаточно большая единица измерения, обычно эквивалентную дозу измеряют в миллибэрах (мбэр, 10 -3 бэр) или микрозивертах (мкЗв, 10 -6 Зв). 1 мбэр = 10 мкЗв.

Способы защиты от радиации:

1. Защита временем подразумевает ограничение времени пребывания на местности или объектах, пораженных радиоактивным загрязнением (чем короче промежуток времени, тем меньше полученная доза облучения).

2. Под защитой расстоянием понимается эвакуация людей из мест, где отмечается или ожидается высокий уровень радиации.

3. В условиях невозможности проведения эвакуации осуществляется защита экранированием и поглощением . В этом способе защиты используются убежища, укрытия и средства индивидуальной защиты.

Эти способы защиты – составная часть комплекса мероприятий, проводимых в интересах обеспечения защиты людей в зонах радиоактивного загрязнения, который включает:

– выявление и оценку радиационной обстановки;

– оповещение населения о возникшей опасности;

– ввод в действие режимов радиационной защиты;

– проведение радиационной профилактики;

– организацию дозиметрического контроля;

– дезактивацию дорог, сооружений, технологического оборудования;

– эвакуацию производственного персонала и населения;

– санитарную обработку;

– ограничение доступа в загрязненные районы;

– защиту органов дыхания и кожи;

– простейшую обработку продуктов питания;

–перевод сельскохозяйственных животных на незагрязненные пастбища;

– введение посменной работы на объектах с высокими мощностями доз излучения.

Оповещение населения о радиоактивном загрязнении организуется органами ГО ЧС. Сигнал «Радиационная опасность» подается при выявлении начала радиоактивного заражения данного населенного пункта (района) или при угрозе радиоактивного заражения в течение ближайшего часа. Он доводится до населения по местным радио- и телевизионным сетям. Сигнал также может подаваться сиренами. После уведомления о радиационной опасности населению следует незамедлительно действовать согласно полученным по средствам массовой информации рекомендациям.

Правила поведения населения при радиационном заражении местности :

1) защитить органы дыхания имеющимися средствами индивидуальной защиты – надеть маски противогазов, респираторы, ватно‑тканевые повязки, противопыльные тканевые маски или применить подручные средства;

2) по возможности – укрыться в ближайшем здании, защитном сооружении;

3) войдя в помещение, снять и поместить верхнюю одежду, обувь в пленку или пластиковый пакет, закрыть окна и двери, отключить вентиляцию, провести дезактивацию открытых участков кожи.

4) включить телевизор, радиоприемник;

5) при наличии измерителя мощности дозы облучения определить уровень радиации;

6) провести герметизацию помещения и защиту продуктов питания;

7) сделать запас воды в закрытых сосудах;

8) принимать радиопротекторы и препараты йода (можно использовать настойку йода) в первые часы после аварии;

9) строго соблюдать правила личной гигиены, значительно снижающие внутреннее облучение организма;

10) покидать помещение при крайней необходимости, на короткое время.

При выходе защищать органы дыхания и надевать плащи, накидки из подручных материалов и средства защиты кожи. После возвращения переодеваться и переобуваться.

Для снижения последствий воздействия ионизирующих излучений на организм человека применяются противорадиационные препараты. Это лекарственные средства, повышающие устойчивость организма к воздействию ионизирующих излучений или снижающие тяжесть клинического течения лучевой болезни. Кроме того, радиопротекторы ослабляют ранние симптомы поражения радиацией – тошноту и рвоту. К числу этих веществ относятся цистеин,цистамин , цистофос и другие.

Особое место в противорадиационной профилактике человека занимает йодная профилактика . Это обусловливается тем, что в отличие от ядерного взрыва, в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131 (период полураспада 8 дней). Попадая в организм человека через незащищенные органы дыхания или с пищей, он сорбируется щитовидной железой и поражает ее. Наиболее эффективным методом защиты является прием внутрь лекарственных препаратов стабильного йода – йодистого калия в таблетках.

Максимальный защитный эффект достигается при заблаговременном или одновременном с поступлением радиоактивного йода приеме стабильного аналога. Защитный эффект препарата резко снижается в случае его приема спустя 2 часа после поступления в организм радиоактивного йода. Однако даже через 6 часов после разового поступления йода-131 прием препарата стабильного йода может снизить дозу облучения щитовидной железы примерно в 2 раза.

В ВГУ действует инструкция по применению стабильного йода населением для защиты щитовидной железы и организма от радиоактивных изотопов йода, утвержденная ректором ВГУ, профессором В.Т. Титовым 28.01.2008г. Срок пересмотра январь 2013г. Данная инструкция разработана Отделом по делам ГО и ЧС. Инструкция разработана на основе рекомендаций Министерства здравоохранения РФ № 32-015/87 от 1.04.1993года.

Основные положения инструкции :

В РФ рекомендован и применяется калия йодид. Он обеспечивает снижение дозы облучения щитовидной железы на 97 %. В дополнение к йодиду калия рекомендуется раствор Люголя и 5 % настойка йода. Они практически всегда имеются в домашних аптечках.

Калия йодид применяют в следующих дозах. Внутрь ежедневно:

– Взрослым и детям от 2 лет по 1 таб. 0,125;

– Детям до 2 лет по 1 таб. 0.04;

– Беременным женщинам по 1 таб. 0,125 с одновременным приёмом калия перхлората 0,75 (3 таб. по 0,25).

Настойка йода применяется:

– Взрослым и подросткам старше 14 лет – по 44 кап 1 раз в день или по 22 кап 2 раза в день после еды на ½ стакана молока или воды;

– Детям от 5 лет и старше – 20-22 кап 1 раз в день или 10-11 кап 2 раза в день после еды на ½ стакана молока или воды;

Можно наносить на кожу в тех же дозах.

Раствор Люголя применяется:

– Взрослым и подросткам старше 14 лет – по 22 кап 1 раз в день или по 10-11 кап 2 раза в день после еды на ½ стакана молока или воды;

– Детям от 5 лет и старше – 10-11 кап 1 раз в день или 5-6 кап 2 раза в день после еды на ½ стакана молока или воды;

– Детям до 5 лет не назначают внутрь.

Предлагаемые препараты стабильного йода не представляют опасности в рекомендуемых дозах, не оказывают побочного действия. После изучения радиационной обстановки специально созданной комиссией принимается решение о продолжении или отмене йодной профилактики.

Радиационная авария — событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами.

При размещении радиационно опасного объекта должны учитываться факторы безопасности. Расстояние от АЭС до городов с населением 500тыс-1млн человек 30 км; 1-2млн 50 км; с населением более2 млн 100км. Также учитываются роза ветров, сейсмичность зоны, её геологические, гидрологические, ландшафтные особенности.

По масштабам распространения РВ и радиационным последствиям радиационные аварии делят на три типа :

· локальная авария — это авария, радиационные последствия которой ограничиваются одним зданием или сооружением и при которой возможно облучение персонала и загрязнение здания или сооружения выше уровней, предусмотренных для нормальной эксплуатации;

· местная авария — это авария, радиационные последствия которой ограничиваются зданиями и территорией АЭС и при которой возможно облучение персонала и загрязнение зданий и сооружений, находящихся на территории АЭС, выше уровней, установленных для нормальной эксплуатации;

· общая авария — это авария, радиационные последствия которой распространяются за границу территории АЭС и приводит к облучению населения и загрязнению окружающей среды выше установленных уровней.

Очаг аварии — территория разброса конструкционных материалов аварийных объектов и действия α-, β- и γ-излучений.

Зона радиоактивного загрязнения — местность, на которой произошло выпадение радиоактивных веществ.

В первые часы и сутки после аварии действие на людей определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом), радиоактивных выпадений на местности (продукты деления, выпадающие из облака), внутренним облучением вдыхания РВ из облака, а также за счет загрязнения поверхности тела человека этими веществами.

В дальнейшем, в течение многих лет накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. Складывающаяся при этом радиационная обстановка не столь сложная, как при многократном или растянутом во времени выбросе РВ и резко меняющихся метеоусловиях. След радиоактивного облака, формирующийся в результате выпадения РВ из облака на поверхность земли при одноразовом выбросе, имеет вид эллипса ; при многократном — мозаичное загрязнение.

При возникновении радиационной аварии на АЭС с выбросом радионуклидов она протекает по трем фазам.

Ранняя фаза протекания аварии продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления в атмосферу и окончания формирования радиоактивного следа на местности. Доза облучения людей на данной фазе формируется за счет g- и b-излучения РВ, содержащихся в радиоактивном воздухе, а также вследствие ингаляционного поступления в организм РВ, содержащихся в облаке.

Средняя фаза протекания — длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. На средней фазе источником облучения являются РВ, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой.

Поздняя фаза протекания аварии длится до прекращения выполнения защитных мер и отмены всех ограничений жизнедеятельности населения. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе.

Радиоактивность — самопроизвольное превращение ядер атомов с испусканием ионизирующего излучения.

Для измерения активности радиоактивного вещества в Международной системе единиц СИ установлена единица — беккерель (Бк); 1 Бк = 1 распад/с.

Внесистемная единица активности-кюри (Ки); 1 Ки = 3,7-10 10 Бк.

Период полураспада (Ti /2).- время, в течение которого распадается половина атомов радиоактивного вещества.

Основными терминами, характеризующими радиоактивность, являются прони­кающая радиация, ионизирующее излучение и облучение.

Проникающая радиация — поток γ-лучей и нейтронов, выделяющихся из зоны ядерного взрыва и распространяющихся в воздухе во все стороны на многие сотни метров и вызывающих ионизацию атомов среды, через которую они проникают (газа, жидкости, твердого тела, биологической ткани).

Ионизирующее излучение — излучение, образующее при взаимодействии со средой положительные и отрицательные ионы. Основными параметрами ионизирую­щего излучения являются доза излучения, мощность дозы излучения.

Различают:

а-излучение ионизирующее излучение, состоящее из положительно заряжен­ных α-частиц(ядер гелия), испускаемых при ядерных превращениях;

β-излучепие — поток β-частиц (отрицательно заряженных электронов или положи­тельно заряженных позитронов) с непрерывным энергетическим спектром;

γ-излучение — электромагнитное (фотонное) ионизирующее излучение, испус­каемое при ядерных превращениях или аннигиляции частиц.

Нейтронное излучение — поток незаряженных частиц (нейтронов) с высокой проникающей способностью.

При воздействии ионизирующих излучений на биологическую ткань происхо­дит разрушение молекул с образованием химически активных свободных радикалов, являющихся пусковым механизмом повреждений внутриклеточных структур и самих клеток. Повреждение клетки приводит либо к ее гибели, либо к нарушению ее функ­ций с сохранением способности к размножению.

Поврежденные клетки тела, сохранившие способность к размножению, в отда­ленные сроки могут привести к развитию различных, в том числе опухолевой приро­ды, заболеваний, а поврежденные герминативные (зародышевые) клетки — к генети­ческим заболеваниям у потомков облученных лиц. При оценке отдаленных последст­вий облучения необходимо иметь в виду, что не только ионизирующее излучение мо­жет привести к подобным эффектам. Существует ряд неблагоприятных факторов (ку­рение, алкоголь, химические воздействия, солнечное излучение и др.), также приво­дящих к спонтанно возникающим опухолевым и наследственным заболеваниям.

Поглощенная доза (D) — дозиметрическая величина, измеряемая количеством энергии, поглощенной в единице массы облучаемого вещества (биологической ткани).

В системе СИ единицей измерения поглощенной дозы является грей (Гр); 1 Гр = 1 Дж/кг вещества.

Внесистемная единица — рад; 1 рад = 1 10 -2 Гр.

Но поглощенная доза не учитывает того, что при одинаковой ее величине биологический эффект от действия a-излучения будет значительно больше, чем от g- и b-излучения. Поражающее действие a-частиц выше, чем ионизирующих излучений других видов.

Эквивалентная доза (Н) — поглощенная доза, усредненная по органу или ткани, взвешенная по качеству с точки зрения особенностей биологического действия дан­ного излучения. Весовой множитель, используемый для этой цели, называется весо­вым множителем излучения (ранее — фактор качества). Эквивалентная доза конкрет­ной ткани рассчитывается как сумма произведений поглощенных доз (усредненных по данной ткани от каждого вида излучения) на соответствующий весовой множи­тель излучения.

В системе СИ единицей измерения эквивалентной дозы является зиверт (Зв); 1 Зв = 1 Дж/кг.

Внесистемная единица эквивалентной дозы — 1 бэр = 0,01 Зв (1 Зв = 100 бэр).

Эффективная доза (Е) — эквивалентная доза, взвешенная по относительному вкладу данного органа или ткани в полный ущерб от стохастических (онкологиче­ские и наследственные заболевания) эффектов при тотальном облучении всего тела. Весовой множитель, используемый для этой цели, называется тканевым весовым множителем. Эффективная доза — это сумма произведения эквивалентных доз в раз­личных органах и тканях на соответствующий тканевый весовой множитель для этих органов и тканей.

Единица измерения эффективной дозы — зиверт (Зв).

Эффективная доза используется только для оценки вероятности возникнове­ния стохастических эффектов и только при условии, когда поглощенная доза зна­чительно ниже порога дозы, вызывающей клинически проявляемые поражения.

Общее облучение — относительно равномерное облучение (внешнее или внутреннее) всего тела. Облучение длительностью не более 3 суток называется острым или кратковременным; более 2 суток — пролонгированным или хроническим; в случаях, когда полная доза отпускается с перерывами между отдельными фракциями — дробным или фракционированным облучением.

Радиационные эффекты:

· детерминированные (ранее называвшиеся нестохастическими) — биологиче­ские эффекты излучения, для которых существует дозовый порог, выше ко­торого тяжесть этого эффекта возрастает с увеличением дозы;

· стохастические — биологические эффекты излучения, для которых предпо­лагается отсутствие дозового порога их возникновения. Принимается, что ве­роятность возникновения этих эффектов пропорциональна величине воздей­ствующей дозы, а тяжесть их проявления от дозы не зависит. При облучении человека к стохастическим эффектам относят злокачественные опухоли и на­следственные заболевания;

· соматические детерминированные и стохастические биологические эф­фекты излучения, возникающие у облученного индивидуума;

· наследственные стохастические эффекты, проявляющиеся у потомства об­лученного индивидуума.

Особенности биологического действия ионизирующего излучения:

· отсутствие субъективных ощущений в момент контакта с излучением

· наличие скрытого периода действия

· несоответствие между тяжестью ОЛБ и ничтожным количеством первично пораженных клеток

· суммирование малых доз

· генетический эффект (действие на потомство)

· различная радиочувствительность органов

· высокая эффективность поглощенной энергии

· тяжесть облучения зависит от времени получения суммарной дозы

· влияние на развитие лучевого поражения обменных факторов (при снижении обменных процессов перед облучением или во время него уменьшается его биологический эффект).

Лучевая болезнь — общее заболевание организма, развивающееся вследствие воздействия ионизирующего излучения. Различают острую лучевую болезнь (О Л Б) и хроническую лучевую болезнь (ХЛБ) различной степени тяжести.

Острая лучевая болезнь (ОЛБ) развивается после кратковременного (минуты, часы, до 2-3 суток) внешнего относительно равномерного облучения в дозах, превышающих пороговое значение (более 1 Гр); выражается в совокупности поражений органов и тканей (специфические синдромы).Современная классификация ОЛБ основывается на твердо установленной в эксперименте и клинике дозовой зависимости поражения отдельных критических органов, нарушение функционального состояния которых определяет форму ОЛБ. При внешнем относительно равномерном облучении различают:

· Костномозговая форма развивается при облучении в дозе 1-10 Гр; в зависимости от величины дозы она разделяется на:

ОЛБ легкой степени тяжести (1-2 Гр),

Средней (2-4 Гр),

Тяжелой (4-6 Гр),

Крайне тяжелой (6-10 Гр).

Клиническую картину этой формы ОЛБ определяют геморрагический синдром и синдром инфекционно-некротических осложнений. Частота летальных исходов в диапазоне доз 2-10 Гр возрастает от 5 до 100%; они наступают, в основном, в сроки от 5 до 8 недель.

· Кишечная форма ОЛБ возникает после облучения в дозе 10-20 Гр. В клинической картине преобладают признаки энтерита и токсемии; летальный исход — на 8-10 сутки.

· Токсическая (сосудистотоксическая ) форма ОЛБ возникает после облучения в дозе 20-80 Гр. Клиническая картина характеризуется нарастающими проявлениями астеногиподинамического синдрома и острой сердечно-сосудистой недостаточностью; летальный исход — на 4-7 сутки.

· Церебральная форма ОЛБ возникает после облучения в дозе более 90 Гр. Сразу после облучения появляется однократная или повторная рвота, жидкий стул, временная (на 20-30 мин.) потеря сознания, прострация, а в дальнейшем — психомоторное возбуждение, дезориентация, атаксия, судороги, гипертензия, расстройство дыхания, коллапс, сопор, кома; смерть наступает на 1-3 сутки поражения.

Хроническая лучевая болезнь (ХЛБ) от внешнего облучения возникает при длительном воздействии в дозах более 1 Гр в год. В течении выделяют 4 нечетко разграниченных периода: начальных функциональных нарушений, собственно заболевания, восстановления и последствий.

Лучевая реакция — обратимые изменения тканей, органов или целого организма и их функций, вызванные равномерным общим облучением в дозах 0,5-1 Гр.

При радиационной аварии различают следующие пути облучения человека: внешнее облучение от радиоактивного облака; внешнее облучение от радиоактивных выпадений на почву; внутреннее облучение от поступивших в организм человека радионуклидов (инкорпорация радионуклидов). Распределение инкорпорированных радионуклидов в теле человека зависит от их химических свойств и путей поступления в организм: через органы дыхания (ингаляционное поступление), через пищеварительный тракт (пероральное поступление), через неповрежденные и поврежденные кожные покровы (перкутанное поступление).

Структура радиационных аварийных поражений представлена:

· острая лучевая болезнь от сочетанного внешнего и внутреннего облучения;

· острая лучевая болезнь от крайне неравномерного воздействия y-излучения;

· местные радиационные поражения;

· лучевые реакции

· лучевая болезнь от внутреннего облучения;

· хроническая лучевая болезнь от сочетанного облучения;

Доза ионизирующего излучения, не приводящие к острым радиационным поражениям, к снижению трудоспособности:

· однократная (разовая) – 50 рад (0,5 Гр)

· многократные: месячная – 100 рад(1 Гр), годовая 300 рад (3 Гр).

В выводах, которые формулируются силами РСЧС в результате оценки радиационной обстановки, для службы МК д.б. указано:

· число людей, пострадавших от ионизирующего излучения; требуемые силы и средства здравоохранения;

· наиболее целесообразные действия персонала АЭС, ликвидаторов, личного состава формирований службы МК;

· дополнительные меры защиты различных контингентов людей.

При авариях на радиационноопасных объектах могут возникнутьследующие поражающие факторы радиационного характера :

· проникающая радиация;

· радиоактивное загрязнение местности.

Проникающая радиация (ионизирующие излучение) представляет собой большую опасность для здоровья и жизни людей.

К ионизирующим излучениям относятся :

· альфа-излучение, состоящее из альфа-частиц;

· бета-излучение — поток электронов или позитронов;

· гамма-излучение, фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей.

Альфа-излучение обладает наибольшей ионизирующей способностью, но ее энергия быстро уменьшается, поэтому оно не представляет опасности для человека до тех пор, пока испускающие альфа-частицы вещества не попадут внутрь организма.

Бета-излучение обладает меньшей ионизирующей и большей проникающей способностью. При попадании радиоактивных веществ на кожу и внутрь организма бета-излучение опасно для человека.

Гамма-излучение при своей сравнительно малой ионизирующей активности представляет большую опасность в силу очень высокой проникающей способности.

Наиболее характерным для радиационных ситуаций, возникающих при авариях на АЭС, является сочетанное радиационное воздействие, вызванное внешним (равномерным или неравномерным) бета-, гамма — облучением и внутренним радиоактивным загрязнением.

Мерой поражающего действия ионизирующих излучений является доза этих излучений . Степень неблагоприятного воздействия излучения измеряется в бэрах . Поглощенная доза излучения измеряется в греях, радах .

Оценка уровней ионизирующего излучения на радиоактивно загрязненной местности осуществляется по мощности экспозиционной дозы и измеряется в рентгенах (миллирентгенах) в час.

Радиоактивное загрязнение местности происходит при выпадении радиоактивных элементов на земную поверхность и окружающие предметы.

Кроме выше перечисленных радиационных поражающих факторов, воздействующих на организм человека в зоне аварии, на него действуют нерадиационные поражающие факторы :

· ударная волна;

· световое излучение;

· мощный электромагнитный импульс;

· острые или хронические психоэмоциональные перегрузки;

· радиофобия;

· нарушения привычного стереотипа жизни, режима и характера питания при длительном вынужденном нахождении (проживании) на радиоактивно загрязненной местности.

В результате взрыва ядерного объекта образуется ударная волна , которая может отбросить человека и ударить его о твердые предметы. Разрушающиеся строения и летящие обломки зданий наносят механические травмы (переломы костей, ушибы, порезы).

При взрыве выделяется огромное количество световой и тепловой энергии , которая вызывает у человека ожоги кожных

покровов и дыхательных путей разной степени тяжести.

Электромагнитный импульс может вывести из строя различные электроприборы, другое оборудование.

Нерадиационные факторы всегда в той или иной степени воздействуют на организм, оказавшийся в аварийной ситуации.

Чем меньше доза облучения, тем в большей степени в картине заболевания проявляются эффекты воздействия нерадиационных факторов.

Они вызывают изменения функционального состояния различных органов и систем, которые определяют, в конечном счете, ответную реакцию организма, проявляющуюся симптомокомплексом того или иного заболевания.

Они снижают устойчивость организма к действию радиации (синдром взаимного отягощения).

Особое значение как, этиологического фактора ряда патологических состояний, нерадиационные воздействия приобретают у людей, вынужденных длительное время проживать на загрязненных радиоактивными веществами (даже в пределах допустимых уровней) территориях.

Таким нерадиационным фактором в этих случаях является хроническое психотравмирующее воздействие, обусловленное утратой социальных связей, сознанием неопределенности последствий, экономической зависимостью.

Хроническая психотравма вызывает в организме целый ряд весьма устойчивых и выраженных нарушений, прежде всего функционального состояния общерегуляторных систем, обусловливающих развитие астении, вегетативной неустойчивости, нейроциркуляторной дистонии, сдвигов в иммунной системе.

Эти изменения фиксируются и усиливаются при некорректной их оценке, особенно медицинским персоналом.

Конец работы —

Эта тема принадлежит разделу:

Чрезвычайные ситуации происшедшие в последние годы в России и за рубежом сопровождавшиеся человеческими жертвами заставляют пересмотреть многие.. Ликвидация медико санитарных последствий чрезвычайных ситуаций включает.. Выполнение этих мероприятий является приоритетной задачей Всероссийской службы медицины катастроф которая была..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Сокращения используемые при изучении дисциплины « Медицина катастроф» АИ-2 — аптечка индивидуальная АЭС — атомная электрост

Территориальные и функциональные подсистемы, уровни управления РСЧС состоит из территориальных и функциональных подсистем и действует на федеральном, межрегиональном, региональном, муниципальном и объектовом уровнях. Тер

Перечень и задачи федеральных служб предупреждения и ликвидации чрезвычайных ситуаций В целях решения комплекса специальных задач по защите населения и территорий от опасностей различного характера федеральными органами исполнительной власти организуются соответствующие функциональн

Координационные органы, постоянно действующие органы, органы повседневного управления, силы и средства Координационными органами единой системы являются: · на федеральном уровне — Правительственная комиссия по предупреждению и ликвидации ЧС и обеспечению пожарн

Задачи, состав сил и средств единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций Задачи: · осуществление наблюдения и лабораторного контроля за состоянием окружающей природной среды и потенциально опасных объектов с целью прогнозирования ЧС; ·

Силы и средства ликвидации чрезвычайных ситуаций МЧС РФ. Войска гражданской обороны Особое место в ликвидации последствий ЧС занимают силы и средства постоянной готовности МЧС России, которые включают: · центр управления в кризисных

Поисково-спасательная служба Поисково-спасательная служба объединяет несколько десятков региональных ПСС и поисково-спасательные отряды общей численностью около 2 тыс. чел. При возникновении крупномасштабных ЧС

Авиация МЧС РФ Авиация МЧС РФ является одной из важнейших составляющих сил РСЧС, решающим образом влияющих на мобильность и эффективность действий ее структур при возникновении ЧС, и вып

Основные мероприятия РСЧС по предупреждению и ликвидации последствий чрезвычайных ситуаций Мероприятия по предупреждению ЧС: · организация мониторинга, наблюдения и лабораторного контроля за окружающей природной средой и потенциально опасными объектами;

История развития Всероссийской службы медицины катастроф В СССР в октябре 1932 г. для защиты населения на случай войны была создана местная противовоздушная оборона (МПВО), в составе которой одной из ведущих являлась медико-санитарная

Определение, задачи и основные принципы организации Всероссийской службы медицины катастроф Медицина катастроф является разделом медицины и представляет собой систему научных знаний и сферу практической деятельности, направленные на спасение жизни и сохранение здоровья

Федеральный уровень Всероссийской службы медицины катастроф В масштабе РФ ВСМК включает: · Всероссийский центр медицины катастроф «Защита» МЗСР РФ (ВЦМК «Защита») с входящими в него штатными формированиями и учреждениями;

Местный и объектовый уровень Всероссийской службы медицины катастроф Местный уровень ВСМК (в масштабе отдельных районов, городов, городских районов) включает: · центры службы медицины катастроф (там, где они создаются) или станции (подстанции

Определение управления Всесоюзной службы медицины катастроф Управление ВСМК — целенаправленная деятельность руководителей органов управления, формирований и учреждений по поддержанию готовности службы к решению поставленных задач и в ход

Система управления Всероссийской службой медицины катастроф Закономерно, что система управления ВСМК соответствует системе управления РСЧС. Руководящими органами ВСМК на федеральном, региональном и территорильном уровнях являются:

Принципы организации взаимодействия Всероссийской службы медицины катастроф Взаимодействие ВСМК представляет собой систему согласованных и взаимосвязанных мероприятий: · по подготовке органов управления, формирований и учреждений службы раз

Управление Всероссийской службой медицины катастроф в ходе ликвидации чрезвычайных ситуаций Организация управления ВСМК при ликвидации ЧС зависит главным образом от масштабов и характера ЧС, действующей организации медико-санитарного обеспечения и общей системы управления при ликвидации Ч

Бригады специализированной медицинской помощи Бригады специализированной медицинской помощи (БСМП) могут быть штатными или нештатными. Они являются мобильными формированиями СМК и предназначены для специализации или уси

Бригады доврачебной помощи и фельдшерские выездные бригады скорой медицинской помощи Бригады доврачебной помощи(БДП). Они являются нештатными подвижными медицинскими формированиями здравоохранения, предназначенными для медицинской сортировки пораженных, оказания им

Задачи и организационная структура специализированной противоэпидемической бригады Практика последних десятилетий показала, что наиболее эффективными, мобильными и мощными формированиями, способными к быстрому развертыванию в полевых условиях и к автономной деятельности, является

Определение и мероприятия медицинской защиты Медицинская защита – это комплекс мероприятий, проводимых ВСМК и медицинской службой гражданской обороны (МСГО) для предупреждения или максимального ослабления воздействия на на

Медицинские средства индивидуальной защиты и их использование Под медицинскими средствами индивидуальной защиты (МСИЗ) следует понимать медицинское имущество, предназначенное для выполнения мероприятий по защите населения и спасат

Табельные медицинские средства индивидуальной защиты К табельным (табель — документ, устанавливающий перечень и количество медицинского имущества, предусмотренного для оснащения формирования СМК в соответствии с его предназначением) МСИЗ относятся

Особенности развития психических расстройств у пораженных, медицинского персонала и спасателей в чрезвычайных ситуациях Оказание психиатрической помощи в условиях ЧС пострадавшему населению относится к приоритетным медицинским мероприятиям, что особенно актуально для легкопораженных, у которых развитие психических н

Основные способы психологической защиты населения и лиц, участвующих в его спасении Для выбора варианта психотерапевтического воздействия необходимо оценить следующие факторы: · общее состояние пациента, наличие, характер и тяжесть соматической патологии;

Психофармакотерапия В зоне ЧС в зависимости от тяжести состояния наряду с психологической помощью могут применяться лекарственные средства. Из препаратов перорального применения могут применяться как препарат

Медицинская экспертиза и реабилитация участников ликвидации чрезвычайных ситуаций Врачебная экспертиза и медицинское освидетельствование спасателейпредставляет собой комплекс мероприятий, направленных на определение годности граждан к работе спасателями.

Защита медицинского персонала, больных и имущества Для этих целей принято использовать комплекс защитных мероприятий, который включает применение: · средств индивидуальной защиты; · защитных свойств здания ЛПУ — см. 1 вопрос этой

Организация работы больницы в чрезвычайных ситуациях Работа ЛПУорганизуется в соответствии с планом работы штаба ГО объекта: · если оно не подвергается воздействию поражающих факторов ЧС, то в соответствии с имеющимся заданием, привод

Условия, определяющие систему лечебно-эвакуационного обеспечения Лечебно-эвакуационное обеспечение- это часть медико-санитарного обеспечения ВСМК при ликвидации ЧС, включающая розыск пораженных (больных), оказание им первой ме

Особенности медицинской сортировки пораженных в условиях чрезвычайных ситуаций Медицинская сортировка представляет собой распределение пораженных на группы по признакам нуждаемости в однородных лечебно-профилактических и эвакуационных мероприятиях в соотве

На этапах медицинской эвакуации, где оказывается первая врачебная помощь, пораженные (больные) распределяются на группы Исходя из нуждаемости в специальной обработке и изоляции: · нуждающиеся в частичной специальной обработке; · нуждающиеся в изоляции в изоляторах для больных с желудочно-киш

Особенности медицинской эвакуации пораженных в чрезвычайной ситуации Под медицинской эвакуацией понимают вынос (вывоз) пораженных из очага, района (зоны) ЧС до этапов медицинской эвакуации с целью своевременного оказания необходимой медицинской п

Особенности организации оказания медицинской помощи детям в чрезвычайных ситуациях Оказание медицинской помощи детям должно осуществляться с учетом анатомо-физиологических особенностей детского организма, обусловливающих отличия в клинических проявлениях и течении посттравматичес

Характеристика химических аварий Предприятия народного хозяйства, производящие, хранящие и использующие в своем производстве аварийноопасные химические вещества (АОХВ), при аварии на которых может произойти массовое поражение люде

Основные мероприятия по организации оказания медицинской помощи пораженным в очаге химической аварии Организация медико-санитарного обеспечения при химических авариях может быть эффективной лишь при условии предварительного планирования и всесторонней подготовки. Мероприятия по ликвида

Силы и средства, привлекаемые для ликвидации последствий химических аварий При организации медицинской помощи пораженным важное место занимает организация четкого взаимодействия сил и средств, участвующих в ликвидации последствий химической аварии. Основные силы

Ликвидация медико-санитарных последствий транспортных аварий при перевозке химически опасных грузов На объектах народного хозяйства производятся, хранятся, используются в производстве и перевозятся значительные количества химических веществ, многие из которых обладают высокой токсичностью и спосо

Организация оказания первой врачебной, квалифицрованной и специализированной медицинской помощи при ликвидации последствий химических аварий Первая врачебная помощьоказывается пораженным в ближайшем ЛПУ вне зоны химического загрязнения. В случае большого числа потерь могут привлекаться формирования СМК.

Медико-санитарное обеспечение при ликвидации последствий радиационных аварий 2.1. Характеристика радиационных аварий. Радиационная авария — выброс радиоактивных веществ за пределы радиационноопасного объекта, в р

Характеристика медико-санитарных последствий радиационных аварий Все живое на Земле находится под непрерывным воздействием ионизирующих излучений. Нужно различать два компонента радиационного фона: естественный фон и порожденный деятельностью человека — техно

Однократные дозы ионизирующего излучения, приводящие к развитию острой лучевой болезни Степень тяжести ОЛБ Доза при внешнем облучении рад Гр I (легкая) 100-200

Последствий радиационных аварий Успех ликвидации медико-санитарных последствий радиационных аварий обеспечивается: · своевременным оповещением работников объекта и населения, проживающего недалеко от объекта о рад

Силы и средства, привлекаемые для ликвидации медико-санитарных последствий радиационных аварий При организации медицинской помощи пораженным важное место занимает организация четкого взаимодействия сил и средств, участвующих в ликвидации последствий радиационной аварии. Основные сил

Характеристика транспортных и дорожно-транспортных чрезвычайных ситуаций Доржно-транспортное происшествие (ДТП)– это событие, возникшее в процессе движения по дороге транспортного средства и с его участием, при котором погибли или ра

Особенности медико-санитарного обеспечения транспортных, дорожно-транспортных чрезвычайных ситуаций Принципы оказания медицинской помощи пораженным на месте любой ЧС едины. В период изоляции, когда пострадавшие в зоне ЧС предоставлены сами себе, основной принцип — оказание само- и

Характеристика чрезвычайных ситуаций взрыво — и пожароопасного характера Характер последствий производственной аварии зависит от ее вида и масштаба, особенностей предприятия и обстоятельств, при которых она произошла. Наиболее опасными следствиями крупных аварий являютс

Особенности медико-санитарного обеспечения при взрывах и пожарах При ликвидации медико-санитарных последствий взрывов и пожаров в ходе проведения лечебно-эвакуационных мероприятий основное внимание медицинских работников обращается на прекращение д

Характеристика террористических актов Терроризм (страх, ужас) – насилие или угроза его применения в отношении физических лиц или организаций, создающие опасность гибели людей, а также уничтожение (повреждение) или у

Особенности медико-санитарного обеспечения при террористических актах Исходя из существующей системы медико-санитарного обеспечения в ЧС, оказание медицинской помощи пострадавшим в террористических актах организуется следующим образом. На местном и территори

Особенности медико-санитарного обеспечения населения при локальных вооруженных конфликтах Вооруженный конфликт – одна из форм разрешения противоречий между государствами или народами с применением средств вооруженного насилия, при котором государства, вовлеченные в к

Характеристика землетрясений Землетрясение– подземные толчки, удары и колебания земли, вызванные естественными процессами, происходящими в земной коре. Разрушающее действие землетрясений сходно

Основы организации медико-санитарного обеспечения при ликвидации последствий землетрясений При ликвидации медико-санитарных последствий большинства разрушительных землетрясений применяется система этапного лечения с эвакуацией пораженных по назначению в специализированные (профилированны

Характеристика чрезвычайных ситуаций природного характера Наводнение — это временное значительное затопление местности водой в результате подъема ее уровня в реке, озере или на море, а также образование временных водотоков.

Основы организации медицинского обеспечения, силы и средства привлекаемые при ликвидации последствий чрезвычайных ситуаций природного характера Оказание медицинской помощипострадавшему от стихийных бедствий населению в ходе ликвидации медико-санитарных последствий ЧС организуется и материально обеспечивается государством. В зависи

Принципы оказания медицинской помощи при наводнении, при попадании людей под снежные лавины и сели Массовым видом поражения при наводнении является утопление. Условно выделяют утопление аспирационное («истинное»), асфиксическое и синкопальное (рефлекторное). При аспирацио

Обеспечения в чрезвычайных ситуациях Одной из характерных особенностей XXΙ века является массовый травматизм среди населения вследствие катастроф, вызванных силами природы или технологической деятельностью человека. Нере

Дезактивация продуктов питания Загрязнение пищевых продуктов РВ, как показано выше, носит поверхностный характер и обусловлено попаданием РВ непосредственно на поверхность продуктов или на поверхность упаковочного материала.

Эпидемии инфекционных заболеваний и групповые отравления Эпидемия– это массовое, прогрессирующее во времени и пространстве распространение инфекционного заболевания в пределах определенной территории, значительно превы

Основы организации медицинского снабжения в чрезвычайных ситуациях Медицинское снабжение (МС) представляет собой систему научных знаний и практических действий, обеспечивающих своевременное и полное обеспечение потребностей СМК во всех режимах

Учет медицинского имущества Независимо от принадлежности к тому или иному классу МИ классифицируется на группы по учетным признакам: · основные средства — медицинская техника длительного по

Управление обеспечением медицинским имуществом Задача обеспечения СМК МИ решается в результате выполнения в определенной последовательности в соответствующие сроки целого ряда мероприятий. Учитывая их объем и значение, возникает необх

Организация медицинского снабжения в режиме чрезвычайной ситуации При ликвидации медико-санитарных последствий ЧС перед СМК стоит задача в сложных условиях планомерно и в полном объеме обеспечивать МИ деятельность своих учреждений и формирований.

Организация защиты медицинского имущества в чрезвычайных ситуациях При некоторых ЧС мирного времени в результате аварий на предприятиях химической, ядерной и других отраслей промышленности, а в военное время при применении противником оружия массового поражения (Я

Задачи военной медицины в Единой государственной системе предупреждения и ликвидации последствий чрезвычайных ситуаций в мирное время СМК Минобороны Российской Федерации (МО РФ) входит в состав ВСМК, которая в свою очередь входит в состав Единой государственной системы предупреждения и ликвидации последствий чрезвычайных ситуаций

Контрольные вопрсы 1. Что является главной задачей СМК Минобороны РФ? 2. Что относится к постоянным (штатным) органам управления? 3. Что относится к оперативным дежурным органам СМК? 4. Что

Порядок использования ИПП-8 -вскрыть пакет -взять тампон и обильно смочить его жидкостью пакета -смоченным пакетом протереть открытые участки кожи, шлем- маску противогаза -снова смочить та

Порядок использования ИПП-11 -вскрыть пакет по насечке -достать тампон и обработать им открытые участки кожи и одежду прилегающую к ним

Заключение Возникновение массовых санитарных потерь среди населения в чрезвычайных ситуациях вынужденно приводит к значительной перестройке организационно-тактических форм работы здравоохранения. Это может бы

В результате аварии на РОО наибольшую опасность для населения представляет радиоактивный выброс. В результате выброса возможно облучение людей и животных, а также радиоактивное загрязнение местности.

В связи с этим основными поражающими факторами при радиационных авариях являются:

  • * воздействие внешнего облучения (бета-, гамма-, рентгеновское, нейтронное излучение и др.);
  • * внутреннее облучение от попавших в организм человека радионуклидов (к перечисленным присоединяется альфа-излучение);
  • * сочетанное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;
  • * комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая или термическая травма, химический ожог и др.)
  • * ингаляционный путь;
  • * алиментарный;
  • * через поврежденную кожу;
  • * через слизистые.

Основными нуклидами, формирующими внутреннее облучение в первые дни после аварии, являются радиоактивные изотопы йода, которые аккумулируются щитовидной железой. Наибольшая концентрация радиоактивного йода отмечается в молоке.

С учетом удаления времени от момента аварии практически остается 2 пути поступления радиоактивных веществ в организм: алиментарный и ингаляционный. Токсичность радиоактивных веществ при ингаляционном поступлении в 2-3 раза выше, чем при алиментарном пути поступления, так как путь поступления — слизистая оболочка верхних дыхательных путей находится вблизи лимфоидной ткани. По прошествии 2-3 месяцев после аварии основным источником внутреннего облучения становятся радиоактивные цезий, стронций и плутоний, попадание которых внутрь возможно с продуктами питания.

Метаболизм радиоактивных веществ в организме:

  • 1 стадия — образование первичного депо (в слизистой ЖКТ, ВДП);
  • 2 стадия — всасывание в кровь;
  • 3 стадия — инкорпорация в критических органах в зависимости от тропности вещества к тканям организма;
  • 4 стадия — выведение (80 % всех поступивших в организм). Радиоактивные вещества выводятся почками (90 % изотопов), на втором месте стоит ЖКТ, на третьем — кожа, потовые железы.
  • 1. локализуются преимущественно в скелете (кальций, стронций, радий, плутоний);
  • 2. концентрируются в печени (церий, лантан, плутоний и др.);
  • 5. равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);
  • 6. радиоактивный йод избирательно накапливается в щитовидной железе.

Вероятность возникновения онкологических и генетических последствий существует даже при малых дозах облучения. Эти эффекты называются стохастическими (вероятными, случайными). Тяжесть стохастических эффектов не зависит от дозы, с ростом дозы увеличивается лишь вероятность их возникновения. Вредные эффекты, для которых существует пороговая доза и степень тяжести, нарастают с ее увеличением и называются нестохастическими (лучевая катаракта, нарушение детородной функции и др.).

Особое положение занимают последствия облучения плода (тератогенные эффекты). Особо чувствителен плод к облучению на 4-12-й неделях беременности.

Исходя из вышеизложенного, основные усилия для предупреждения патогенного воздействия радиоактивных веществ, необходимо направить на предотвращение попадания их в организм, уменьшения степени воздействия на организм попавших внутрь РВ и скорейшему их выведению из организма.

С этой целью необходимо организовать применение средств индивидуальной защиты и средств медицинской защиты всеми находящимися в очаге, а также проведение эвакуации согласно «Концепции по защите населения при авариях на АЭС».

Источник

Рейтинг
Ufactor
Добавить комментарий