Характеристика основных видов ионизирующих излучений

Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество.

Виды:

· Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.

· Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров.

· Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т. д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом — у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.

2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.

3. Действие от малых доз может суммироваться или накапливаться.

4. Генетический эффект — воздействие на потомство.

5. Различные органы живого организма имеют свою чувствительность к облучению.

6. Не каждый организм (человек) в целом одинаково реагирует на облучение.

7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови — снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

От альфа-лучей можно защититься путём:

  • увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  • использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения используют:

  • ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • увеличение расстояния до источника излучения;
  • сокращение времени пребывания в опасной зоне;
  • экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
  • использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • дозиметрический контроль внешней среды и продуктов питания.

137. Ионизирующие излучения: α-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от α-излучения.

Альфа-излучение (альфа-лучи) — один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели — радиоактивные изотопы, испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5–8 см в воздухе). Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и гамма-излучений. При внешнем облучении тела альфа-частицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через рот долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах ретикулоэндотелиальной системы и др., вызывая внутреннее облучение организма.

От альфа-лучей можно защититься путём:

  • увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  • использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

138. Ионизирующие излучения: β-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от β-излучения.

Бета-излучение — представляет собой поток электронов (β-излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), возникающих при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов.

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета-излучений скорость этих частиц может лежать в пределах 0,3 — 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см, а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц выше, чем альфа-частиц (из-за меньших массы и заряда). Например, для полного поглощения потока бета-частиц, обладающих максимальной энергией 2 МэВ, требуется защитный слой алюминия толщиной 3,5 мм. Ионизирующая способность бета-излучения ниже, чем альфа-излучения: на 1 см пробега бета-частиц в среде образуется несколько десятков пар заряженных ионов.

В качестве защиты от бета-излучения используют:

  • ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • методы и способы, исключающие попадание источников бета-излучения внутрь организма.

139. Ионизирующие излучения: γ-излучение, природа, характеристика, свойства, длина пробега в воздухе. Защита от γ-излучения.

Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5×10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.

Гамма-квантами являются фотоны с высокой энергией. Средний пробег гамма-кванта составляет около 100 м в воздухе и 10-15 см в биологической ткани. Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение). Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд. Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

Источник

Рейтинг
Ufactor
Добавить комментарий