Содержание
Дозиметр радиации — это инструмент для измерения радиоактивного излучения. Он позволяет замерять радиационный фон в помещениях, а также общее количество радиоактивных веществ в любых окружающих предметах. Их использование обязательно на потенциально опасных производствах: на атомных станциях, на оружейных заводах и фабриках по производству медтехники.
В быту этот прибор тоже может быть очень полезным. Ведь уровень радиации очень сильно влияет на здоровье человека. Она имеет свойство накапливаться в организме и способна вызывать различные болезни, в том числе онкологические. Безопасным принято считать радиационный фон до 50 микрорентген в час.

Бытового дозиметра вполне достаточно, чтобы определить уровень радиоактивного заражения. И если датчик показывает, что допустимая норма превышена, лучше покинуть место нахождения или устранить из своего окружения предмет-источник заражения.
- Содержание
- Доза и индикация дозиметра [ править | править код ]
- Описание бытовых дозиметров [ править | править код ]
- Общий принцип измерения [ править | править код ]
- Устройство [ править | править код ]
- Счётчики для дозиметрии всего организма [ править | править код ]
- ТBMA [ править | править код ]
- Лёгочный счётчик [ править | править код ]
- Устройство дозиметра
- Счетчик Гейгера-Мюллера
- Какой дозиметр выбрать
- Для чего нужно покупать дозиметр?
- Источник
Конструкция дозиметра радиации и принцип работы
Главной рабочей деталью аппарата является датчик радиации. Именно от него зависит, как быстро можно получить данные и насколько они будут точны. Под действием альфа-, бета- и гамма-излучения в датчике происходят скачки напряжения, которые преобразуются в числовые данные.
Датчики отличаются друг от друга чувствительностью и бывают:
- Слюдяные счетчики Гейгера-Мюллера. Их устанавливают в бытовые дозиметры. Фиксируют альфа- и бета- частицы.
- Газоразрядные. Используются для небольших, карманных приборов. Регистрируют бета- и гамма-излучение и показывают только критический уровень.
- Термолюминесцентные лампы встречаются в дозиметрах для индивидуального пользования. Замеряют накопленную дозу радиации.
- Сцинтилляционные кристаллы. Фиксируют фотоны и их чувствительность максимальна. Однако бесполезны для измерения альфа-излучения.
- Пин-диоды — наименее чувствительные датчики, которые фиксируют только критические уровни. Как правило, устанавливаются в телефонные штекеры.
Другим составным элементом дозиметра выступает система оповещения. В бюджетных бытовых устройствах она представляет собой светодиоды и звук. Чем выше радиационный фон, тем интенсивнее мерцание и характерное потрескивание прибора. Более новые дозиметры, а также профессиональные модификации оснащены преобразователем данных и экраном для их отображения.
Дозиметр радиации может иметь и дополнительные функции, например, выносной детектор, настройку режимов измерения и подключение к ПК или планшету для анализа данных. Наиболее подходящая модель подбирается с учетом требований потребителя и условий применения.
Классификация приборов
По своему назначению дозиметры подразделяются на:
- Бытовые. Реагируют только на гамма-излучения, имеют высокую степень погрешности и применяются для замера радиационного фона в помещении, а также излучение от продуктов питания и иных предметов.
- Профессиональные. Фиксируют альфа-частицы, протоны и нейтроны. Измеряют уровень и дозу излучения в помещениях и на местности, от живых объектов, предметов, газов и жидких веществ. Такие модели обязательно регистрируются в реестре Росстандарта.
- Промышленные. Предназначены для постоянного контроля за уровнем радиации. Устанавливаются на АЭС, горно-обогатительных предприятиях и т.п.
- Военные. Предназначены для использования в военное время.
Среди бытовых устройств выделяют персональные, карманные и портативные.
Персональные по размеру напоминают обычный брелок. Могут регистрировать бета-, гамма-частицы, поток нейтронов и фотонов. Реагируют на превышение допустимого порога звуком или вибрацией. Некоторые приборы обладают световым сигналом. Дисплей у такого устройства отсутствует, и числовые данные можно получить только при подключении к компьютеру. Предназначены они для информирования своего хозяина о его нахождении в потенциально опасной зоне.
Карманный дозиметр радиации позволяет не только выявлять повышение допустимого фона бета- и гамма-излучения, но и запечатлевать полученные данные. Они имеют небольшие размеры, питаются от аккумулятора или батареек, имеют экран и несложное меню.

Есть и более оснащенные варианты, которые подключаются к телефону и/или планшету и имеют больший функционал.
Портативные совмещают в себе дозиметр и радиометр. В их функции входит еще и поиск зараженного предмета или объекта. Реагируют на гамма-излучение, используют разные виды оповещения (свет, звук), отображают данные на дисплее и имеют возможность подключения к ПК для анализа данных.
Как выбрать дозиметр радиации
Для того, чтобы определиться с моделью устройства, нужно прежде всего разобраться в том, для каких целей оно будет применяться. Установить, что окружающий радиационный фон превышает допустимые значения, в состоянии любой прибор. Если требуется только получать подобную информацию, подойдет обычный сигнализатор.
Для получения подробных данных об излучении требуются более чувствительные измерители, например МКС-03СА. Для обнаружения источника заражения применяются устройства поиска — они определяют направление к объекту излучения по колебаниям фона.

Если наряду с источником нужно установить тип изотопа, потребуются спектрометры, к примеру, лазерный дозиметр ЛД-07.

При выборе прибора для применения в домашних условиях, следует обращать внимание и на другие характеристики:
- Верхний порог измерений. Желательно, чтобы он был не ниже 10 000 мкР/ч.
- Типы датчиков и их количество в устройстве. Лучше, если в дозиметре несколько датчиков, позволяющих замерять разные виды излучений.
- Производитель и наличие сертификата качества.
- Размеры — бытовой дозиметр радиации должен быть компактным, помещаться в ладони и кармане.
- Особенности работы. Желательно, чтобы питание прибора осуществлялось при помощи батареек, а экран был монохромным.
- Система оповещения — звуковой, световой сигнал или отображение на дисплее.
- Существование дополнительного функционала в зависимости от требований пользователя.
- Возможность и тип подсоединения к гаджетам и ПК.
Дозиметр радиации с пин-диодами в практическом применении показал себя просто бесполезным, поэтому от него лучше отказаться.
Как правило, эксплуатация бытовых дозиметров не вызывает затруднений у пользователя. К тому же, к ним прилагается подробная инструкция. Проверить исправность тоже довольно просто — достаточно посмотреть на показания.
Интересные факты о радиации
О вреде радиации известно всем. Но есть и более интересные факты, позволяющие узнать о ней что-то новое:

- Радиационный фон атомной подводной лодки меньше, чем наших обычных квартир.
- Некоторые растения, например банан, являются источником излучения. Но его доза настолько мизерна, что лучевой болезни не случится, даже если есть одни бананы.
- Изотопы имеются и в табаке, поэтому курящие люди получают вместе с дымом дозу облучения, равную 300-м рентгеновским процедурам.
- Вследствие изменений в техносфере наши тела намного радиоактивнее, чем тела наших предков, населяющих Землю 200 лет назад.
- Летчики и стюардессы подвержены облучению больше, чем работники атомных станций, ведь на большой высоте атмосфера Земли уже не так эффективно отражает рентгеновские волны.
- Производственные отходы с высоким содержанием мышьяка более вредны для человека, чем радиоактивные.
- Каждый день мы сталкиваемся с разными видами излучений, большинство из которых никак нам не вредит. Опасно лишь ионизирующее излучение в высоких дозах.
Дози́метр — прибор для измерения экспозиционной дозы, кермы фотонного излучения, поглощенной дозы и эквивалента дозы фотонного или нейтронного излучения, а также измерение мощности перечисленных величин [1] . Само измерение называется дозиметрией.
Содержание
Доза и индикация дозиметра [ править | править код ]
В отличие от поглощенной дозы [2] , нормируемые в радиационной безопасности эквивалентная и эффективная дозы не являются измеримыми на практике [3] . Для их консервативной оценки введены так называемые операционные величины, в единицах измерения которых откалибровано оборудование радиационного контроля (дозиметры). В настоящее время стандартизированы и используются следующие операционные величины [4] :
- амбиентный эквивалент дозы H*(10);
- направленный эквивалент дозы H'(0.07,Ω);
- индивидуальный эквивалент дозы, Hp(d).
Первые две величины используются при мониторинге среды, а третья при индивидуальной дозиметрии (например, с использованием персональных носимых дозиметров).
С помощью измеренных операционных величин можно консервативно оценить значение полученной эффективной дозы [5] . Если значение операционной величины меньше установленных пределов, то никакого дополнительного пересчета при этом не требуется [5] [6] .
Ранее выпускавшиеся дозиметры могли быть откалиброваны в единицах максимальной эквивалентной дозы (Hмакс), показателя эквивалентной дозы (ПЭД), либо полевой эквивалентной дозы [7] [8] , кроме того использовалась величина экспозиционной дозы (X).
Описание бытовых дозиметров [ править | править код ]
Бытовые приборы, как правило, имеют световую и (или) звуковую сигнализацию и дисплей для отсчёта измерений. Размер и исполнение варьирует от наручного браслета до «карманного» исполнения. Время непрерывной работы от одной батареи от нескольких часов до нескольких месяцев.
Как правило, бытовые приборы не позволяют оценить дозу, полученную при контакте с нейтронными источниками [9] . Оценка фотонного, α и β-излучения зависит от наличия дополнительных фильтров и характера используемых датчиков. Например, приборы сконструированные на датчике СБМ-20, и выполненные в сплошном пластиковом корпусе, настроены на измерение только одного вида ИИ — фотонного (жесткого γ-излучения) [9] .
Диапазон измерения бытовых дозиметров, как правило, зависит от характера используемых в приборе датчиков. Например, для датчика СБМ-20 предел 4*10 3 имп/сек, где 60 имп/мкР пределом измерения будет
66 мкР/сек [10] вне зависимости от градуировки на экране. При подходе к пороговым значениям возникнет срыв детекции, что обусловлено образованием тлеющего разряда в детекторе. Значения мощности дозы на экране будут резко уменьшаться.
Общий принцип измерения [ править | править код ]
В качестве регистрирующего элемента излучения в дозиметрах применяются газоразрядные индикаторы ионизирующего излучения, основанные на эффекте лавинного пробоя ионизированного пространства, при напряжённости поля, близкой к критической, но не превышающей её. Для этого в межэлектродном пространстве счётчика Гейгера поддерживается напряжённость поля в состоянии насыщения, но ниже границы самостоятельного пробоя(тлеющего разряда). Это и есть границы плато Гейгера — горизонтального участка на вольт-амперной характеристике этих датчиков. В этом состоянии в пространстве датчика поддерживается напряжённость поля, предельная для данного расстояния между электродами, но недостаточная для возникновения между ними самостоятельного пробоя, и датчик удерживается в запертом пограничном состоянии.
При попадании в пространство датчика ионизирующего излучения, под его воздействием возникает вынужденная ионизация (появление свободных носителей заряда) и в заряженном электрическом поле по треку возникает лавинный пробой, ориентированный в направлении «катод-анод» электростатическим полем, под возействие которого попадают эти свободные носители заряда и привлечённые цепной ионизацией носители заряда зоны пролёта. А поскольку собственная ёмкость (Cгаш) датчика минимальна, при правильно подобранном сопротивлении Rн происходит полный разряд электростатического потенциала датчика, по истощении которого пробой затухает, полностью сбрасывая потенциал до нижнего края плато. Таким образом датчик на время пробоя переходит в замкнутое состояние, чем формирует импульс, пропускаемый конденсатором Cэ, который при этом тоже разряжается, благодаря чему импульс соответствующий частице или гамма-кванту количественно, поступает на вход аттенюатора, а у датчика при этом наступает мёртвое время измерения(время перезаряда пространственного конденсатора до нижнего края плато, в которое он не способен регистрировать излучение).
Аттенюатор выравнивает импульс по амплитуде и фронтам до прямоугольного и передаёт в таком виде на счётчик импульсов, воспринимающий эти импульсы как счётные строго определённое время, определяемое таймером и заданное в зависимости от рабочего обьёма датчика/датчиков таким образом, чтобы результат измерения соответствовал фактическому значению дозы излучения в заявленных величинах. Т.е. фактически счётчик считает количество импульсов(зарегистрированных квантов) за единицу времени в рабочем обьёме датчика, либо (в случае однодетекторной схемы) «подтормаживая» отсчёт времени на единицу мёртвого времени(от фронта до спада фактического счётного импульса приостанавливая таймер) тем же аттенюатором, либо (в случае многодетекторной схемы) на время перезаряда регистрирует импульсы оставшимися в ждущем режиме датчиками. Начальное общее(предзаданное) время измерения инженерно задаётся жёстко(кварцованным таймером), как калиброванная постоянная величина, непосредственно связанная с суммарным рабочим обьёмом датчиков. По окончании времени измерения отсчёт и высоковольтный генератор питания датчиков запираются, и выдаётся сигнал(если это конструктивно возможно) об окончании измерительного цикла.
Поскольку фактическое время цикла измерения составляет, в зависимости от схемы датчиков от 1(АНРИ 01 02 с системой датчиков 4+2) до 5(тот же Мастер-1 на примере которого показана базовая структурная схема с 1 датчиком) минут, данные приборы практически не применимы для поисковых целей и предназначены именно для измерения дозы фонового излучения всенаправленной системой датчиков, приведённой к их рабочему обьёму, либо уровня излучения стационарно размещённого относительно прибора источника излучения всё время экспозиции.
Устройство [ править | править код ]
- один или несколько детекторов на разные типы излучения
- съемные фильтры для оценки структуры излучения
- систему индикации дозы
- счётное устройство
- контрольный источник ионизирующего излучения для калибровки детектора сцинтилляционного типа
Примером может служить химический дозиметр ИД-11 (алюмофосатное стекло, активированное серебром), регистрирующий воздействие гамма- и смешанного гамма-нейтронного излучения. Измерение зарегистрированной дозы производится с помощью измерительного устройства ИУ-1 (или ГО-32) в диапазоне от 10 до 1500 рад. Доза излучения суммируется при периодическом облучении и сохраняется в дозиметре в течение 12 месяцев. Масса ИД-11 равна 25 г. Масса ИУ-1 – 18 кг.
Детекторами ионизирующих излучений [12] (чувствительными элементами дозиметра, служащими для преобразования явлений, вызываемых ионизирующими излучениями в электрический или другой измеряемый сигнал) могут являться различные по устройству и принципам работы датчики:
- Газоразрядные детекторы ионизирующих излучений
- ионизационная камера (прямопоказывающий индивидуальный дозиметр «ДКС-101» или «ДДГ-01Д»
- датчики Гейгера — Мюллера (например, «бета-1» для α,β,γ-излучения или «СБМ-20» для β,γ-излучения или СНМ-50 для нейтронного излучения)
В СССР бытовые дозиметры получили наибольшее распространение после Чернобыльской аварии 1986 года. До этого времени дозиметры использовались только в научных или военных целях.
Счётчики для дозиметрии всего организма [ править | править код ]
ТBMA [ править | править код ]
Bomab (The BOttle MAnikin Absober) — фантом, разработанный в 1949 году и с тех пор принятый в Северной Америке, если не во всем мире [ уточнить ] , как отраслевой стандарт (ANSI 1995) для калибровки дозиметров, использующихся для дозиметрии всего организма (whole body counting).
Фантом состоит из 10 полиэтиленовых бутылок, либо цилиндров или эллиптических баллонов, являющихся его головой, шеей, грудной клеткой, животом, бедрами, ногами и руками. Каждая секция заполнена радиоактивным раствором в воде, радиоактивность которого пропорциональна объёму каждой секции. Это имитирует однородное распределение материала по всему организму.
Примеры радиоактивных изотопов, использующихся для калибровки эффективности измерения: 57 Co, 60 Co, 88 Y, 137 Cs и 152 Eu. [ источник не указан 797 дней ]
Лёгочный счётчик [ править | править код ]
Лёгочный счётчик (en:Lung Counter) — система, предназначенная для измерения и подсчета излучения от радиоактивных газов и аэрозолей, вдыхаемых человеком и достаточно нерастворимых в тканях тела, чтобы покинуть лёгкие в течение нескольких недель, месяцев или лет. Состоит из детектора или детекторов излучения и связанной с ними электронной части.
Часто такая система размещается в нижних этажах помещений (для защиты от адронной компоненты космического фона) и окружена защитой от фонового гамма-излучения (толстые стенки из стали, свинца и других тяжёлых материалов) и нейтронного излучения (кадмий, бор, полиэтилен).
Так как лёгочный счетчик в основном используется для измерения радиоактивных веществ, излучающих низкоэнергетичные гамма- или рентгеновские лучи, фантом, используемый для калибровки системы, должен быть антропометрическим. Такой фантом человеческого туловища разработан, например, в Ливерморской национальной лаборатории им. Э. Лоуренса (Torso Phantom). [ источник не указан 797 дней ]
Навигация по статье:

Для измерения уровня радиации (ионизирующего излучения) применяют измерительные приборы, называемые дозиметрами.
В зависимости от конструкции и типа дозиметра, он может измерять несколько видов радиации или только один из ее видов — альфа, бета, гамма, рентгеновское или нейтронное излучение. Дозиметры, способные измерять несколько видов радиации, имеют более сложное устройство, достаточно высокую стоимость и в основном относятся к профессиональным средствам измерения. Для бытовых целей как правило применяются дозиметры, измеряющие один или два вида радиации — гамма, бета, иногда альфа излучение. У бытовых дозиметров меньше диапазон измеряемых величин и большая погрешность измерения, то есть бытовые дозиметры имеют меньшую точность.
Дозиметры могут применяться для измерения уровня радиации или выполнять роль предупреждающих индикаторов радиоактивной опасности. По своему функциональному назначению, дозиметры можно разделить на группы:
- Индикаторы или сигнализаторы — простые приборы с невысокой чувствительностью и малой точностью, не имеющие цифрового табло, а только подающие световой или звуковой сигнал при радиационной опасности.
- Измерительные приборы — это приборы для измерения радиационного фона, имеющие цифровой или аналоговый индикатор, отображающий уровень радиации. Уровень радиации может отображаться в различных единицах, обычно это мкЗв/час.
- Поисковые приборы — это высокочувствительные измерительные приборы с дополнительными, обычно выносными (наружными) детекторами. Применяются данные приборы для поиска малейших изменений радиации. Обычно используются для досмотра пограничными службами и другими спецслужбами.
Устройство дозиметра
Работа любого дозиметра базируется на основе одних и тех же принципах работы. Базовым элементом всех дозиметров является датчик радиации. В зависимости от принципа работы, датчики радиации делятся на:
Наиболее распространенной конструкцией газоразрядного датчика, является счетчик Гейгера-Мюллера, который применяется в большинстве бытовых и профессиональных дозиметрах.
Счетчик Гейгера-Мюллера
Счетчик Гейгера Мюллера — это герметичный стеклянный цилиндр, заполненный инертным газом. Внутри цилиндра, протянут тонкий токопроводящий провод, который является анодом. На стенках колбы закреплена тонкая металлическая пленка, являющаяся катодом.
В нормальных условиях газ, разделяющий катод и анод, не проводит электрический ток. При прохождении сквозь колбу зараженных частиц (радиации), они сталкиваются с молекулами газа, ионизируя их. Это делает газ проводящим ток и между катодом и электродом начинает течь электричество. Этот момент и регистрируется прибором. Наличие электричества между катодом и электродом датчика, говорит о том, что в данный момент сквозь датчик проходят частицы радиоактивного излучения.
Схема счетчика Гейгера-Мюллера:

1 – герметически запаянная стеклянная трубка; 2 – катод (тонкий слой меди внутри колбы); 3 – вывод катода; 4 – анод (тонкая нить)
Рассмотренная конструкция счетчика Гейгера-Мюллера является типовой. Но существуют другие исполнения датчика, например, с металлической колбой взамен стеклянной. При этом принцип работы датчика остается прежним.
Видео с принципом работы счетчика Гейгера-Мюллера:
Какой дозиметр выбрать
Чтобы определиться какой дозиметр выбрать, нужно понять, кокой вид радиации для человека представляет опасность и что желательно контролировать в повседневной жизни.
Все виды радиации опасны, но в бытовой сфере и окружающей нас среде, можно столкнуться с действием в основном трех видов радиации — это бета, гамма и альфа излучение. Наибольшую опасность представляет альфа излучение, так как оно наносит живой ткани наибольший урон. Но зарегистрировать альфа излучение сложнее всего, потому что для его измерения, дозиметр должен быть поднесен вплотную к источнику излучения, так как альфа излучение распространяется в пространстве на небольшие расстояния в пределах 2-3 см. Дозиметры способные зарегистрировать альфа излучение, должны иметь отдельный датчик в дополнении к датчику Гейгера-Мюллера. Обычно это специальное окошечко в дозиметре, которое имеет сдвигаемую защитную крышку.
Если позволяют денежные средства, то лучше купить дозиметр способный измерять три вида радиации — бета, гамма и альфа излучение.
Если вы не хотите тратиться на покупку дорогого прибора, то можно приобрести дозиметр-радиометр, измеряющий бета и гамма излучение. Это неплохое начало и возможно поможет вам избежать серьезных проблем со здоровьем. Такой прибор отлично подойдет для измерения общего радиационного фона в помещении и вне его. С помощью данного дозиметра можно проверить на безопасность продукты питания, строительные материалы, автомобиль и любые другие бытовые вещи.
При выборе дозиметра следует обратить внимание на следующие характеристики:
- тип используемого детектора — это основной параметр, влияющий на точность и функциональность прибора. Лучше если это будет газоразрядный детектор, например, счетчик Гейгера-Мюллера. Хуже если это полупроводниковый детектор.
- виды измеряемой радиации — прибор может измерять как один вид радиации, так и несколько видов. При измерении нескольких видов радиации, измерения могут проводиться одновременно для различных видов излучений, или необходимо будет переключаться с одного вида излучения на другой. Самый простой и распространенный вид дозиметра — это измерение бета излучения. Но лучше, если дозиметр будет способен измерять три вида излучений — альфа, бета, гамма.
- погрешность измерения — это величина, которая характеризует точность прибора. Чем меньше погрешность, тем выше точность прибора, соответственно тем он лучше и дороже. Для бытовых приборов погрешность обычно составляет ±25% или ±30%. Для профессиональных дозиметров погрешность уже будет меньше чем ±7%.
- диапазон измеряемых величин — это максимальное и минимальное значение радиации, которое способен зарегистрировать прибор. Стоит обратить внимание лишь на нижний порог измерений, он не должен быть выше чем 0,05 мкЗв/ч. Максимально измеряемый уровень радиации у всех дозиметров достаточно высок.
- поверка прибора — это отметка в паспорте дозиметра, что он проверен на заводе изготовителе и соответствует заявленным в паспорте техническим характеристикам и производит измерения с заданной точностью. Желательно, чтобы отметка о поверке была в паспорте. В крайнем случае, в паспорте изделия должна стоять отметка ОТК (отдел технического контроля) о приемке изделия.
Остальные характеристики дозиметра влияют на его удобство эксплуатации, внешний вид и выбираются исходя из личных предпочтений.
Для чего нужно покупать дозиметр?
Для чего нужно приобритать дозиметр в бытовых целях, каждый решает сам.
В качестве информации к размышлению, можно посмотреть сюжет любительской видео съемки в городе Крансодаре, который является одним из самых безопасносных городов России в отношении экологической обстановки. В простом лесном массиве, безобидные на вид предметы (7-я минута видео), излучают радиацию в миллионы раз превышающие безопасную норму. Находясь даже незначительное время в подобной зоне, можно получить дозу, которая с большой вероятностью приведет к крайне негативным последствиям для организма. К сожалению далеко не всегда, возле подобных объектов установлены занки «опасно радиация». Всему виной халатность и безответственность. Поэтому даже прогуливаясь в каком либо месте (фактически любом), человек может и не подозревать, что подвергается мощному радиационному воздействию. А потом удивляться, откуда берутся различные проблемы со здоровьем.