Какие атомы радиоактивных

РАДИОАКТИВНОСТЬ И СТРОЕНИЕ АТОМА

1.6. Явления радиоактивности, открытые А. Беккерелем в 1896 г. и вслед затем изучавшиеся Пьером и Марией Кюри, Э. Резерфордом и многими другими, сыграли ведущую роль в открытии общих законов строения атома и в подтверждении эквивалентности массы и энергии.

1.7. Первым из наблюдавшихся явлений радиоактивности было явление почернения фотографической пластинки под действием минералов, содержащих уран. Хотя до некоторой степени еще и сейчас пользуются этим свойством при исследовании радиоактивности, наибольшее научное значение имеет способность радиоактивных веществ ионизовать газы. Воздух и другие газы в нормальных условиях не проводят электричества иначе невозможно было бы эксплоатировать линии электропередачи и электрические машины на открытом воздухе. Однако, при некоторых условиях молекулы воздуха распадаются на положительно и отрицательно заряженные частицы, называемые ионами. Ионизованный таким образом воздух становится проводником электричества. Через несколько месяцев после первого открытия радиоактивности Беккерель обнаружил способность урана ионизовать воздух. В частности, он нашел, что заряд электроскопа очень быстро исчезает, вследствие ионизации воздуха, если вблизи электроскопа поместить какую-нибудь из солей урана. (То же самое произойдет с зарядом аккумулятора, если близко к нему поднести достаточное количество радиоактивного вещества). С того времени скорость разрядки электроскопа всегда служит мерой интенсивности радиоактивности. Более того, почти все современные приборы для изучения явлений радиоактивности прямо или косвенно основаны на ионизационном эффекте. Элементарное описание подобных приборов электроскопов, счетчиков Гейгера-Мюллера, ионизационных камер и камер Вильсона приведено в Приложении 1.

РАЗЛИЧНЫЕ ИЗЛУЧЕНИЯ И ЧАСТИЦЫ

1.9. Изучение поглощения и других явлений показало, что радиоактивные вещества испускают три типа «излучений»: ?-частицы, являющиеся очень быстрыми ионизованными атомами гелия (ядрами атомов гелия), ?-частицы, являющиеся очень быстро движущимися электронами, и ?-лучи, представляющие собою электромагнитное излучение, подобное рентгеновским лучам. Из всех этих излучений лишь ?-лучи правильно называть излучением, но даже они со своему действию весьма напоминают частицы, благодаря своей малой длине волны. Такая «частица», или квант ?-излучения, называется фотоном, ?-лучи обладают весьма большой проникающей способностью, ?— и ?-лучи меньшей. Но даже несмотря на то, что ?— и ?-лучи обладают не очень большой проникающей способностью, кинетическая энергия их для частиц атомных размеров огромна она в тысячи раз превосходит кинетическую энергию газовых молекул, которую они имеют благодаря тепловому движению, и в тысячи раз больше, чем изменения энергии на один атом в химических реакциях. Именно по этой причине Эйнштейн предположил, что изучение радиоактивности сможет доказать эквивалентность массы и энергии.

1.10. Прежде чем рассматривать вопрос о том, какие атомы испускают ?-, ?— и ?-лучи, и обсуждать законы, управляющие этим испусканием, мы изложим общепринятые представления о строении атомов, частично основанные на изучении радиоактивности.

1.12. Атомный номер и электронная структура. Число положительных зарядов ядра называется атомным номером X. Он определяет число электронов во внеядерной структуре атома, которое, в свою очередь, определяет его химические свойства. Таким образом все атомы данного химического элемента имеют один и тот же атомный номер, и обратно, все атомы, имеющие одинаковые атомные номера, являются атомами одного и того же элемента, независимо от возможных различий в строении их ядер. Внеядерные электроны атома располагаются последовательными оболочками, согласно твердо установленным законам. Оптические спектры возникают вследствие возмущений в наружных частях этой электронной структуры; рентгеновские лучи возникают в результате возмущений электронов оболочек, близких к ядру. Химические свойства атома зависят от наиболее удаленных от ядра электронов, и образование химических соединений сопровождается незначительными перегруппировками этих электронных структур. Отсюда следует, что когда при окислении, горении, взрыве или каком-либо другом химическом процессе выделяется энергия, она выделяется за счет этих структур, так что группировка электронов в атомах, образовавшихся в результате реакции, должна иметь меньшую энергию. (Предполагают, что общая масса этих продуктов соответственно меньше, но обнаружить это пока невозможно). Атомные ядра не испытывают изменений при обычных химических реакциях.

1.14. Изотопы и изобары. Атомы, имеющие один и тот же атомный номер, но разные массовые числа, называются изотопами. Химически они тождественны, будучи лишь разновидностями одного и того же химического элемента. Атомы, имеющие одинаковые массовые числа, но разные атомные номера, называются изобарами и представляют собою различные химические элементы.

1.15. Если атом испускает ?-частицу (которая имеет атомный номер два и массовое число четыре), то он становится атомом уже другого элемента, атомный номер которого меньше на две, а массовое число на четыре единицы. При испускании ядром ?-частицы атомный номер на единицу возрастает, а массовое число остается неизменным. В некоторых случаях эти изменения сопровождаются испусканием ?-лучей. Элементы, которые самопроизвольно изменяются или «распадаются» указанным образом неустойчивы и их принято называть «радиоактивными». Это свойство испускать ?— или ?-частицы обнаруживают только те естественные элементы (за редкими исключениями), которые имеют очень большие атомные номера и массовые числа, например, уран, торий, радий и актиний, т. е. элементы с самым сложным строением ядер.

1.16. Все атомы данного радиоактивного изотопа обладают одинаковой вероятностью распада в заданный промежуток времени, так что достаточно большой образец радиоактивного вещества, содержащий многие миллионы атомов, всегда превращается или «распадается» с одной и той же скоростью. Эта скорость, с которой вещество меняется или «распадается», выражается через «период полураспада» время, необходимое для распада половины всего первоначального количества атомов; это время, очевидно, постоянно для каждой данной разновидности атомов. Периоды полураспада (или просто периоды) радиоактивных веществ лежат в интервале от долей секунды для самых неустойчивых из них до миллиардов лет для тех веществ, которые лишь слегка неустойчивы. Часто «дочернее» ядро, подобно своему радиоактивному «родителю», само является радиоактивным и распадается и т. д., пока через несколько последующих поколений ядер не образуется устойчивое ядро. Существуют три такие семейства или ряда, включающие в общей сложности около сорока разных радиоактивных веществ (рис. 1). Ряд радия начинается с одного изотопа урана, ряд актиния с другого изотопа урана и ряд тория начинается с тория. Конечными продуктами каждого ряда, образующимися после десяти или двенадцати последовательных испусканий ?— и ?-частиц, являются устойчивые изотопы свинца.

ПЕРВЫЕ ОПЫТЫ ИСКУССТВЕННОГО РАСЩЕПЛЕНИЯ ЯДРА

Рис. 1. Начальные участки трех естественных рядов и новые трансурановые элементы нептуний и плутоний.

Это символическое равенство означает, что ядро гелия с массовым числом 4 (?-частица), сталкиваясь с ядром азота, имеющим массовое число 14, дает ядро кислорода с массовым числом 17 и ядро водорода с массовым числом 1. Ядро водорода, называемое Протоном, играет особенно важную роль, так как из всех ядер оно обладает наименьшей массой. Хотя в естественных радиоактивных процессах протоны не обнаруживаются, имеется много прямых указаний на то, что они могут быть выбиты из ядер.

1.18. В течение десятилетия, последовавшего за работами Резерфорда, было произведено много аналогичных экспериментов с подобными же результатами. Один ряд экспериментов этого типа привел к открытию нейтрона частицы, свойства которой будут рассмотрены подробнее, так как именно она является основой в осуществлении всего проекта.

1.20. Одной из особенностей нейтронов, отличающих их от других субатомных частиц, является отсутствие у них заряда. Это свойство нейтронов, задержавшее их открытие, делает невозможным их непосредственное наблюдение и придает им большую проникающую способность. Благодаря отсутствию заряда нейтроны являются важными агентами в ядерных превращениях. Атом, разумеется, в своем нормальном состоянии также незаряжен, но он в десять тысяч раз больше нейтрона и состоит из сложной системы отрицательно заряженных электронов, расположенных на больших расстояниях вокруг положительно заряженного ядра. Заряженные частицы, например, протоны, электроны или ?-частицы, и электромагнитные излучения (например, ?-лучи), проходя через вещество, теряют энергию. При этом возникают электрические взаимодействия, сопровождающиеся ионизацией атомов вещества. (Именно благодаря такому процессу ионизации воздух становится электропроводным на пути электрических искр или вспышек молнии). Энергия, затраченная на ионизацию, равна энергии, потерянной заряженными частицами, которые при этом замедляются, или ?-лучами, которые при этом поглощаются. Однако, такие силы действовать на нейтрон не могут; на него может оказывать влияние лишь сила очень близкого действия, т. е. сила, проявляющая себя только тогда, когда нейтрон подходит к атомному ядру на очень малое расстояние. Это те же силы, которые удерживают вместе составные части ядра, несмотря на силы взаимного отталкивания положительных зарядов внутри него.

Отсутствие электрического заряда у нейтрона затрудняет не только его обнаружение, но и управление им. Заряженные частицы могут быть ускорены, замедлены или отклонены электрическим или магнитным полями; на нейтроны же последние совершенно не действуют. Свободные нейтроны могут быть получены только в результате распада атомных ядер; естественного источника их нет. Единственный способ управления свободными нейтронами поставить на их пути ядра, которые будут их замедлять и отклонять или поглощать при столкновениях. Как мы увидим, эти явления имеют величайшее практическое значение.

1.21. В 1932 г. был открыт не только нейтрон, но также и позитрон. Позитрон впервые наблюдался К. Д. Андерсоном в Технологическом институте в Калифорнии. Масса его равна массе электрона, заряд по абсолютной величине такой же, как и у электрона, но имеет положительный знак.

1.22. 1932 год был отмечен также другим важным открытием. Г. К. Юри, Ф. Г. Брикуэдде и Дж. М. Мерфи обнаружили у водорода изотоп с массовым числом 2, содержащийся в естественном водороде в количестве 1:5000. Благодаря особому значению этого тяжелого изотопа водорода, ему дали специальное название «дейтерий», а соответствующее ядро назвали дейтроном. Подобно ?-частице, дейтрон не является одной из основных частиц, но он играет важную роль в некоторых процессах, вызывающих распад ядра.

1.23. Все элементы состоят из нескольких основных частиц мысль уже не новая. Теперь это твердо установлено. Мы считаем, что существуют три основные частицы нейтрон, протон и электрон.

1.24. Согласно нашим современным взглядам, ядра всех атомов состоят из нейтронов и протонов. Число протонов равно атомному номеру Z. Число нейтронов, N, равно разности между массовым числом и атомным номером, т. е. А-Z.

1.25. Все высказанные нами утверждения основаны на экспериментальных данных. Теория ядерных сил пока не завершена, но на основе принципов квантовой механики она была развита настолько, чтобы с ее помощью можно было объяснить не только описанные выше наблюдения, но и более подробные эмпирические данные об искусственной радиоактивности и о различиях между ядрами с четными и нечетными массовыми числами.

1.26. Выше мы упоминали об испускании позитронов или электронов ядрами, стремящимися к устойчивости. Испускание электронов (?-лучей) уже было известно из изучения естественных радиоактивных веществ, но испускания позитронов для таких веществ обнаружено не было. В действительности, общие рассуждения, изложенные выше, были основаны частично на данных, которые выходят за рамки настоящего отчета. Однако, мы дадим краткое описание открытия «искусственной» радиоактивности и того, что мы о ней знаем.

1.28. Результаты, полученные Кюри и Жолио, послужили стимулом для проведения подобных опытов во всем мире. В частности, Э. Ферми пришел к выводу, что нейтроны, благодаря отсутствию у них заряда, должны, сравнительно легко проникать и внутрь тех ядер, которые имеют высокие атомные номера и в сильной степени отталкивают протоны и ?-частицы. Свое предположение он смог почти сразу подтвердить, обнаружив, что ядро атома, подвергшегося бомбардировке, захватывало нейтрон и что таким образом получалось неустойчивое ядро, которое затем приходило в устойчивое состояние путем испускания электрона. Следовательно, конечное устойчивое ядро имело массовое число на единицу выше, а также атомный номер на единицу выше, чем первоначальное ядро-мишень.

1.30. Искусственные радиоактивные элементы играют важную роль не только в осуществлении всего проекта, в котором мы заинтересованы, их будущее значение в медицине, в химии «меченых атомов» и во многих других областях научно-исследовательской работы вряд ли можно переоценить.

Источник

Рейтинг
Ufactor
Добавить комментарий