Май дозиметр ру

ГОСТ Р ИСО/АСТМ 51900-2013

          Руководство по дозиметрии при исследовании влияния радиации на пищевые и сельскохозяйственные продукты

ОКС 17.24067.020

Предисловие

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 335 «Методы испытаний агропромышленной продукции на безопасность»

4 Настоящий стандарт идентичен международному стандарту ИСО/АСТМ 51900:2009* «Руководство по дозиметрии при исследовании влияния радиации на пищевые и сельскохозяйственные продукты» (ISO/ASTM 51900:2009 Guide for dosimetry in radiation research on food and agricultural products)________________* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить перейдя по ссылке на сайт http://shop.cntd.ru. — Примечание изготовителя базы данных.

1 Область применения

1.1 Данное руководство содержит минимальные требования по дозиметрии, необходимой при проведении исследований по влиянию радиации на пищевые и сельскохозяйственные продукты. Такие исследования включают в себя установление количественной зависимости между поглощенной дозой и соответствующими эффектами в указанных продуктах. В данном руководстве освещены общие вопросы дозиметрии в таких исследованиях и публикациях их результатов. Дозиметрия должна рассматриваться как неотъемлемая часть эксперимента.Примечание 1 — САС разработала международный Общий стандарт и Практический кодекс, в которых рассмотрены вопросы применения радиации для обработки пищевых продуктов. В этих документах особо подчеркнута роль дозиметрии, применение которой гарантирует соблюдение правил радиационной обработки [1].Примечание 2 — Данное руководство содержит справочную информацию в виде примечаний. Пользователи также должны обращаться к ссылкам, приведенным в конце стандарта, а кроме того и к необходимой научной литературе по вопросам методологии эксперимента в области дозиметрии [2-10].

1.3 В настоящем руководстве приведены требования к дозиметрии как при выработке экспериментального метода, так и в стандартных (рутинных) экспериментах. В нем не рассматриваются требования к дозиметрии при оценке качества монтажа или при оценке операционного качества установок для облучения. Эти аспекты рассматриваются в Руководствах ISO/ASTM 51204, 51431, 51608, 51649 и 51702.

1.5 При измерениях необходимо принимать во внимание суммарную неопределенность поглощенной дозы радиации и ее вариации по объему облученного образца (см. Руководство ISO/ASTM 51707).

2 Нормативные ссылки

F 1355 Руководство по радиационной обработке свежей сельскохозяйственной продукции в качестве фитосанитарной меры

F 1640 Руководство по выбору и применению упаковочных материалов для пищевых продуктов, подвергаемых радиационной обработке

F 1885 Руководство по радиационному облучению сухих специй, трав и приправ для ограничения содержания патогенов и других микроорганизмов

51204 Руководство по дозиметрии на гамма-установках для радиационной обработки пищевых продуктов

51261 Руководство по выбору и калибровке дозиметрических систем для радиационной обработки пищи

51276 Руководство по применению дозиметрической системы на основе полиметилметакрилата

51431 Руководство по дозиметрии при обработке пищевых продуктов электронными пучками и рентгеновским (тормозным) излучением

51540 Руководство по применению жидкостной радиохромной дозиметрической системы

51608 Руководство по дозиметрии в установках по радиационной обработке рентгеновским (тормозным) излучением

51650 Система дозиметрическая на основе триацетата целлюлозы. Практическое руководство по применению

51707 Руководство по оценке неопределенностей в дозиметрии при радиационной обработке

51956 Практическое руководство по применению систем термолюминесцентной дозиметрии (TLD) для радиационной обработки.

2.4 Отчет NPL:CIRM 29 : Guidelines for Calibration of Dosimeters for Use in Radiation Processing, Sharpe, P., and Miller, A., August, 1999Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3.1 Определения:

(1)

3.1.2 картирование поглощенной дозы (определение пространственного распределения поглощенной дозы): Измерение поглощенной дозы внутри облученного продукта для получения одно-, двух- и трехмерного распределения поглощенной дозы, в целях определения карты значений поглощенной дозы.

(2)

3.1.4 аккредитованная на право калибровки дозиметрическая лаборатория: Дозиметрическая лаборатория, получившая от аккредитующей организации документ, подтверждающий ее компетентность проводить необходимые операции по калибровке или поверке дозиметрических систем в соответствии с требованиями нормативной документации аккредитующей организации.

3.1.6 равновесие заряженных частиц: Условие, при котором кинетическая энергия заряженных частиц (без учета энергии покоя), проникающих в бесконечно малый объем облучаемого материала равна кинетической энергии заряженных частиц, исходящих из этого объема.

3.1.8 дозиметр: Прибор, который под воздействием облучения демонстрирует количественное изменение, которое можно связать с поглощенной дозой в данном материале, используя соответствующие измерительные приборы и процедуры.

3.1.10 дозиметрическая система: Система, используемая для определения поглощенной дозы, состоящая из дозиметров, измерительной аппаратуры и соответствующих эталонов, а также методик применения данной системы.

3.1.12 референсный эталонный дозиметр: Дозиметр высокого метрологического качества, используемый в качестве эталона для реализации метрологической прослеживаемости до первичных эталонных дозиметров.

3.1.14 воспроизводимость (результатов измерений): Хорошая согласованность между результатами последовательных измерений одной и той же измеряемой величины при замене: принципа или метода измерений, оператора, измерительного прибора, места его размещения, условий применения и времени проведения измерений.Примечание — Корректное определение воспроизводимости требует перечисления условий, которые менялись при проведении измерений. Воспроизводимость может быть выражена количественно в терминах дисперсии результатов. В данном контексте под результатами измерений следует понимать исправленные результаты.

3.1.16 моделирующий продукт: Материал, свойства которого ослаблять и рассеивать излучение близки к аналогичным свойствам облучаемого продукта, материала или вещества.

3.1.18 эталонный дозиметр-переносчик: Дозиметр, часто являющийся референтным эталонным дозиметром, пригодный для транспортировки между различными местоположениями, применяющийся для сравнения результатов измерения поглощенной дозы.

3.1.20 неопределенность (измерения): Параметр, связанный с результатом измерения и характеризующий дисперсию значений, которую обоснованно можно было бы отнести к измеряемой или связанной с ней величине.

3.2 Определения терминов, специфических для данного стандарта:

3.2.2 доза в мишени: Поглощенная доза, предназначенная для представляющего интерес объема внутри облучаемого образца.Примечание — Определения других терминов, используемых в стандарте и имеющих отношение к радиационным измерениям и дозиметрии, можно найти в ASTM Terminology Е170. Определения в Е170 совместимы с определениями в ICRU 60; этот документ, таким образом, может использоваться в качестве альтернативного.

4.1 Настоящее руководство призвано дать общую ориентировку в вопросах дозиметрии для экспериментов с пищевыми и сельскохозяйственными продуктами, включая также представление результатов экспериментов. В исследованиях, касающихся эффективности облучения пищевых и сельскохозяйственных продуктов с целью получения определенного положительного результата, необходимо оперировать с весьма различными характеристиками поглощенных доз в ходе различных экспериментов с различными продуктами. Например, поглощенная доза, необходимая для стерилизации нарезанных кусочков фруктов, значительно меньше поглощенных доз, необходимых для дезактивации некоторых патогенных бактерий в мясе или для обеззараживания специй.Примечание — Примерами важных эффектов облучения являются: подавление жизнеспособных пищевых бактерий, вирусов и паразитов; фитосанитарная обработка (например дезинфекция фруктов и овощей), предотвращение прорастания; задержка созревания; изменения в химическом составе продукта; изменение качества продукта. Дальнейшее обсуждение этих эффектов выходит за рамки данного руководства (см. Руководства ASTM F 1355, F 1356, F 1736 и F 1885).

4.3 Эксперимент должен обеспечивать максимальную равномерность облучения образца. На практике поглощенная доза в образце будет варьировать в некоторых пределах. Для определения уровней, положения и воспроизводимости максимальной () и минимальной () поглощенных доз для данного перечня характеристик эксперимента используется пространственное распределение поглощенной дозы (карта поглощенных доз). Дозиметры, которые используются для получения карты поглощенных доз, должны быть работоспособны в интервалах доз и градиентов доз, близких к тем, которые ожидаются в облучаемых образцах.

5 Установки для облучения и виды обработки

5.2 Автономные гамма- и рентгеновские (тормозные) облучатели с сухим хранилищемВ настоящее время в большинстве исследований, проводимых с пищевыми и сельскохозяйственными продуктами, используются гамма-облучатели либо на основе Cs, либо на основе Со, а также рентгеновские (тормозные) автономные облучатели. Эти установки экранированы свинцом (или другим подходящим материалом с большим атомным номером) и обычно снабжены механизмом для перемещения контейнера с образцами от места загрузки до места облучения.Примечание — Как правило, автономные гамма-облучатели с сухим хранилищем имеют ограниченный объем камеры для облучения. Этот тип облучателя классифицируется как ANSI Category 1, Self-contained Dry Storage Gamma Irradiators [11].

5.2.2 Другой метод получения равномерной дозы в образце при использовании гамма- и рентгеновских установок состоит в том, чтобы вращать контейнер с образцом в поле излучения с помощью поворотного стола облучателя.

Примечание — Этот тип облучателя классифицируется как ANSI Category III, Self-Contained Wet Source Storage Gamma Irradiators [12].

5.4.1 Режим непрерывной работы — Обычный метод облучения контейнеров с образцами, находящихся на конвейере, заключающийся в том, что для получения более равномерной поглощенной дозы конвейер совершает один оборот или более вокруг центрального источника. Когда облучатель не используется, источник излучения извлекается из облучательной камеры.

5.5 Электронные и рентгеновские (тормозные) установки:

5.5.1.1 Ускорители, как правило, формируют узкий пучок электронов, который затем рассеивается таким образом, чтобы охватить всю ширину конвейера, на котором находятся образцы, подлежащие облучению. Рассеяние электронного пучка может осуществляться с помощью магнитного сканера (путем быстрого сканирования пучка, т.е. путем быстрых поворотов в ту и другую сторону), а также с помощью магнитных дефокусирующих линз или рассеивающих фольг.

5.5.2.1 Электроны совершают ускоренное движение к металлической мишени, или «конвертеру», сделанному из металла с большим атомным номером (обычно из вольфрама или тантала). Столкновение электронов с мишенью сопровождается генерацией рентгеновского (тормозного) излучения с широким непрерывным энергетическим спектром.

5.5.4 Более детальную информацию об установках с электронным пучком и рентгеновских (тормозных) установках и режимах их работы можно получить из документов ISO/ASTM Practices 51431, 51608 и 51649.

6.1 Гамма-облучатели

6.1.2 Кобальт-60 излучает фотоны с дискретными значениями энергии приблизительно 1,17 и 1,33 МэВ примерно одинаковой интенсивности. Цезий-137 излучает фотоны с энергией примерно 0,662 МэВ [14].

6.1.4 Для гамма-источников единственной известной причиной изменения уровня радиации является уменьшение активности, вызванное радиоактивным распадом. Это уменьшение активности источника, которая вынуждает увеличивать время облучения для получения одной и той же дозы, может быть вычислено или получено с помощью таблиц, которыми снабжает потребителя производитель облучателя (см. Руководство ISO/ASTM 51204).Примечание — На вычисления времени распада могут наложиться погрешности, вызванные присутствием радиоктивных примесей в источнике радиации (например, небольшое количество Cs как примеси в Cs).

6.2.1 Для электронного ускорителя основными характеристиками электронного пучка являются энергетический спектр электронов, ток пучка и, в зависимости от конструкции, мгновенный (импульсный) ток с указанием длительности импульса и частоты следования (см. Руководства ISO/ASTM 51431, 51649 и 51818).

6.2.1.2 В ускорителях непрямого действия используются высокочастотные электромагнитные волны или источники переменного тока (ас) СВЧ или УВЧ диапазона для получения электронов с энергией, как правило, от 3 МэВ до 15 МэВ.

7 Дозиметрические системы

7.2 Дозиметры могут быть разделены на четыре основных класса в соответствии с их относительными качественными показателями и областями применения: первичный эталон, референсный эталон, эталон-переносчик и рабочие дозиметры. В ISO/ASTM Guide 51261 содержится информация, касающаяся выбора дозиметрических систем для различных применений. В большинстве исследований используются рабочие дозиметры и дозиметры типа эталон-переносчик.

7.2.2 Дозиметры типа референсный эталон — Дозиметры типа референсныи эталон применяются для калибровки радиационного окружения и рабочих дозиметров. Примеры дозиметров типа референсныи эталон вместе с их диапазоном измеряемых доз приведены в Руководстве ISO/ASTM 51261.

7.2.4 Рабочие дозиметры — Рабочие дозиметры могут использоваться для контроля процесса облучения и картирования доз облучения. Для того чтобы измерения были надежными и точными необходимо использовать надлежащие дозиметрические методики, включая калибровку. Примеры рабочих дозиметров вместе с указанием их диапазонов измеряемых доз приведены в таблице 1 и в руководстве ISO/ASTM 51261.Таблица 1 — Примеры рабочих дозиметров (см. Руководство ISO/ASTM 51261)

7.3.1 При использовании, обслуживании, хранении, выполнении особых мер предосторожности, калибровке и т.п. для конкретных рабочих дозиметрических систем, должны соблюдаться условия, изложенные в стандартах ASTM или ISO/ASTM, а также в рекомендациях изготовителя.

7.4.1 Поверка может выполняться путем облучения набора дозиметров при трех разных значениях дозы (в пределах диапазона калибровки), с использованием того же держателя дозиметра, что и в случае облучения при калибровке, и при размещении дозиметра в референсном положении с известным значением мощности дозы. Эти значения дозы сравниваются затем со значениями, вычисленными на основе показаний облученных дозиметров и указанной для них функции отклика. Совпадение результатов в трех точках в пределах неопределенности системы служит подтверждением правильности функции отклика.

7.4.3 Процедура калибровки — Процедура калибровки в основном заключается в облучении дозиметров набором известных доз, охватывающим необходимый диапазон доз, считывании показаний облученных дозиметров с помощью калиброванного измерительного прибора и построении функции отклика (калибровочной кривой). Подробности см. в руководстве ISO/ASTM 51261.

7.4.3.2 Внешние условия — У большинства дозиметров отклик на радиационное воздействие зависит от внешних условий, таких как температура при облучении и после облучения, влажность и мощность дозы. Поскольку калибровочное соотношение, применяемое для данной дозиметрической системы, справедливо только в условиях, которые имели место во время проведения калибровки, условия калибровки должны быть максимально близки к условиям, в которых выполняются повседневные измерения доз, что обеспечивает минимизацию погрешности, вызванной этими эффектами. Таким образом, калибровочное облучение можно проводить одним из двух способов: облучая дозиметры с помощью облучателя, который создает поглощенную дозу (или мощность поглощенной дозы), величина которой обладает свойством прослеживаемости до национальных или международно признанных эталонов, или же с помощью того облучателя, на котором проводятся текущие научные эксперименты.Примечание — Хотя в данном руководстве не рассматриваются детально количественные характеристики, относящиеся к внешним условиям, таким как температура и влажность облучаемых пищевых или сельскохозяйственных продуктов, тем не менее указанные количественные характеристики следует приводить в отчете о работе, поскольку они могут влиять на отклик дозиметра (см. Руководство ISO/ASTM 51261).

7.4.3.4 Облучение в автономном облучателе — В этом случае рабочие дозиметры облучают в определенном референсном положении в радиационном поле, где точно известно значение мощности дозы (предпочтительно, чтобы это положение совпадало с положением исследуемых образцов во время их облучения в текущих экспериментах). Мощность дозы в референсном положении определяют, используя дозиметрические эталоны-переносчики аккредитованной калибровочной дозиметрической лаборатории. Это значение мощности дозы действительно для фиксированной геометрии облучения, для одного определенного держателя дозиметра и фиксированного положения его в радиационном поле. Если рабочий дозиметр и дозиметрический эталон-переносчик имеют существенно различную форму и размеры, конструкция держателя должна быть хорошо проработана; например, характеристики ослабления в обоих случаях должны быть схожи. Для того чтобы обеспечить определенные дозы облучения рабочих дозиметров, можно выбирать различные значения времени облучения (см. Руководство ISO/ASTM 52116).Примечание — Сертифицированная мощность дозы должна быть измерена национальной или аккредитованной лабораторией.

7.4.3.6 Получение функции отклика — Из данных (экспериментальных) калибровки получают функцию, которая позволяет определять дозу по показаниям дозиметра (см. Руководства ISO/ASTM 52261 и 51707). Хотя эту функцию можно получить, используя построенный вручную график зависимости показаний дозиметра от дозы, на практике обычно используется процедура математической подгонки (регрессионный анализ), позволяющая получить аналитическую связь между показаниями дозиметра и дозой. Строго говоря, доза должна рассматриваться как независимая переменная (х). Однако это может привести к уравнению, которое трудно решить относительно дозы, которая является искомой величиной. На практике более удобно считать, что доза является зависимой переменной (переменной у). При условии, что диапазон доз не превышает одной декады, эта процедура не приведет к заметной погрешности (см. Руководство ISO/ASTM 51707 и NPL Report CIRM 29).Примечания

2 Вообще говоря, невозможно рекомендовать определенный тип математического выражения для представления нелинейной связи между показаниями дозиметра и дозой. Во многих случаях полиномиальная функция (например, показания дозиметра=а+b·доза+с·(доза)+…) адекватно описывает искомую связь. При этом необходимо использовать показания индивидуальных дозиметров, т.е. неусредненные показания набора дозиметров, облученных одной и той же дозой. Это позволяет оценить разброс показаний различных дозиметров и увидеть «выпадающие» точки. При выборе полиномиальной функции главным моментом является использование полинома наименьшей степени, способного адекватно представлять совокупность данных. Один из наилучших методов определения порядка полинома основан на анализе распределения остатков относительно дозы для возрастающих значений степени полинома (см. CIRM 29). Следует выбирать минимальную степень полинома, при которой отсутствует систематический тренд.

4 Располагая коммерчески доступным программным обеспечением, прежде чем обратиться к полиномиальному уравнению следует рассмотреть вариант использования неполиномиальных функций. Ожидаемая физико-химическая связь явлений, весьма вероятно, является неполиномиальной. Если показания дозиметра подчиняются известному математическому соотношению или физическому закону, например, логарифмическому, то следует использовать именно эту функцию или закон.

8 Оценка эксплуатационных характеристик

8.2 Тестирование оборудования и калибровка:

8.2.1.1 Тестируют необходимое оборудование и измерительную аппаратуру.

8.2.2 Измерительные приборы — Точность определения поглощенной дозы зависит от правильной работы и калибровки аналитического оборудования при считывании показаний дозиметров.

8.2.2.2 Работа оборудования должна периодически проверяться, а также должна проводиться его повторная калибровка.

9.1 Цель — Целью дозиметрии является оказание помощи в установлении наиболее удобной геометрии облучения образцов и продуктов, включая выбор всех ключевых параметров процесса и предоставление доказательств воспроизводимости дозы и ее распределения.

9.2 Картирование дозы — Упомянутая цель достигается путем построения карты распределения поглощенной дозы по образцу; при этом может идти речь либо о единичном экземпляре продукта, такого как лук или картофель, либо о группе продуктов — например, коробке лука или картофеля. См. ASTM Руководство Е2303.

9.2.2 При картировании дозы дозиметры располагают по всему образцу, как на поверхности, так и внутри образца. Необходимо выбрать схемы размещения дозиметров, с помощью которых можно обнаружить положения значений и (см. Руководство ASTM Е2303). Некоторые дозиметры имеют вид полосок или листов, позволяя исследователю получить одно- или двумерное распределение дозы и уменьшить количество дозиметров, необходимых для получения карты доз.Примечание — Прежде чем приступить к картированию доз исследователь должен ознакомиться с соответствующими стандартами ISO/ASTM и с научной литературой [5, 6, 9]. Дозиметрические данные, полученные в предыдущих экспериментах, или теоретические расчеты могут дать полезную информацию для определения количества и места расположения дозиметров, необходимых для процедуры картирования.

Рисунок 1 — Размещение дозиметров для картирования дозы в контейнере с продуктом в случае фотонного облучения.

Рисунок 1 — Размещение дозиметров для картирования дозы в контейнере с продуктом в случае фотонного облучения.

9.2.4 Положения и значения и в образце должны быть определены по данным карты доз и занесены в отчет. В тех случаях, когда имеет место большая разница между и в образце, необходимо принять меры для минимизации этой разницы (см. 9.3). Если разница все же остается значительно больше неопределенности измерений дозы, следует соотнести радиационный эффект в конкретной точке образца с поглощенной дозой в этой точке.Примечание — Например, исследователь проводит эксперименты с целью определить влияние ионизирующего излучения на развитие гнили в картофеле. Для того чтобы получить статистически достоверные данные требуется много клубней. Когда ящик (коробка) с картофелем облучается на вращающейся платформе с двух или четырех сторон, поглощенная доза меняется в некотором диапазоне значений, в результате чего клубни в центре коробки получат поглощенную дозу меньшую, чем клубни, находящиеся у стенок коробки или в ее углах. Таким образом важно, чтобы клубни не смешивались после облучения и чтобы распределение дозы внутри ящика (коробки) с картофелем было известно. Клубни аккуратно вынимаются с тем, чтобы данные исследований отдельных клубней можно было связать с полученной поглощенной дозой и со специфическим биологическим эффектом (в данном случае с развитием гнили), который был вызван поглощенной дозой.

9.3 Неравномерность дозы:

9.3.2 Для уменьшения эффекта низкоэнергетического рассеянного излучения от материалов вне образца следует выбирать контейнер, который по составу близок к материалу образца (например, полиэтилен, полистирол или полиметилметакрилат для биологических образцов).

9.3.4 Вариации поглощенной дозы могут быть значительными в пищевых и сельскохозяйственных продуктах, у которых плотность и состав меняются внутри продукта. Примерами служат переходы между мягкой и костной тканями или между скорлупой и мякотью фрукта. Следует предпринять попытку количественной оценки таких вариаций поглощенной дозы, помещая достаточное количество дозиметров на переходах указанного выше типа или в непосредственной близости от них.

9.3.6 После того как для данного экспериментального проекта установлена референсная геометрия и окончательно установлен определенный перечень параметров эксперимента, следует получить дозиметрические данные, характеризующие вариации поглощенной дозы, обусловленные статистическими флуктуациями, имеющими место в пределах нормальных условий эксперимента. Степень таких вариаций можно установить путем картирования дозы в нескольких идентичных образцах в идентичных условиях облучения. Полученные статистические вариации распределения поглощенной дозы в облучаемом образце необходимо оценить количественно и зафиксировать как часть экспериментальных результатов.

9.5 Охлажденные или замороженные продукты — Поглощенная доза не зависит от температуры пищевого или сельскохозяйственного продукта. Однако отклик дозиметра может зависеть от температуры. Фактически отклик почти всех дозиметров зависит от температуры, и эта зависимость часто меняется с изменением уровня поглощенной дозы и/или мощности дозы. Таким образом, при облучении охлажденных или замороженных пищевых продуктов картирование дозы может выполняться одним из следующих методов:

9.5.2 Картирование поглощенной дозы может выполняться при температуре, до которой образец будет охлажден или заморожен во время во время реальных экспериментов, с помощью дозиметрической системы, характеристики которой известны при этой температуре или отклик которой незначительно зависит от температуры. Температура образца и дозиметров при облучении должна поддерживаться относительно постоянной (например, путем использования изолированного контейнера).

10 Дозиметрия в ходе проведения эксперимента

10.2 В условиях воспроизводимых экспериментов измерения поглощенной дозы в позициях и или в альтернативных позициях для эксплуатационного мониторинга, установленных во время процедуры картирования дозы (см. 9.4), должны быть достаточны для того, чтобы можно было указать, находятся ли условия эксперимента в рамках технических требований (см. рис.2).

ГОСТ Р ИСО/АСТМ 51900-2013 Руководство по дозиметрии при исследовании влияния радиации на пищевые и сельскохозяйственные продукты

Примечание — Эта экспериментальная установка для облучения мясного сырья, зараженного собственными мясными патогенами, была спроектирована для выявления влияния ионизирующего излучения на жизнеспособность патогенов. 100 г мясного сырья, зараженного собственными мясными патогенами, помещалась в пластмассовую капсулу, используемую для микробиологических образцов, которая в свою очередь помещалась в вертикальном положении в центр пластикового контейнера. Карта доз для данной конфигурации образца (включающей в себя вес, размеры, плотность) была получена сначала для незараженного сырого мяса. Образец сырого мяса имел конфигурацию, улучшающую равномерность дозы. Затем, в рабочем режиме облучения, образец и контейнер устанавливались в центре поля излучения автономного гамма-облучателя с сухим хранилищем. Та же самая геометрия (референсная геометрия) использовалась во всех повторных экспериментах. Контейнер, в который помещен образец, имеет примерно ту же плотность, что и сам образец мяса. Поскольку размещение дозиметра внутри образца было бы неприемлемо с точки зрения безопасности, он прикреплялся к стенке контейнера с образцом в заранее определенном положении (положении эксплуатационного мониторинга), с тем, чтобы контролировать поглощенную дозу в ходе обычных экспериментов. Все повторные измерения сопровождают статистическим анализом.

10.4 Выбор целевой дозы — В протокол эксперимента обычно включают несколько целевых доз, с тем, чтобы помочь определить оптимальную для заданного процесса (или изучаемого эффекта) поглощенную дозу.

Рисунок 3 — Выбор шага целевой дозы

Рисунок 3 — Выбор шага целевой дозы

10.4.2 При необходимости можно рассмотреть вопрос о применении определенных промежуточных значений доз (см. руководство ISO/ASTM 52116).

10.6 Охлажденные и замороженные пищевые продукты — Используют дозиметрическую систему, которая проверялась при той же температуре, при которой проводится эксперимент, или же такую, которая слабо реагирует на изменения температуры. Если используется дозиметрическая система, которая сильно реагирует на изменения температуры, рабочие дозиметры помещают в точки эксплуатационного мониторинга, которые изолированы от температурного градиента (см. 9.4 и 9.5). См. руководство ISO/ASTM 51261 и руководства по применению индивидуальных дозиметрических систем, перечисленных в 2.1 и 2.2.

10.8 Следует использовать статистический анализ текущих измерений поглощенной дозы, чтобы отследить возможные непредвиденные изменения в ходе эксперимента.Примечание — При представлении исследователями результатов экспериментов либо в виде технических отчетов, либо рецензируемых публикаций в научных журналах необходимо приводить величины статистических вариаций дозы, имеющих место в экспериментальной системе. Это относится к вариациям отклика дозиметра для данного набора дозиметров или к вариациям между результатами повторных экспериментов, в которых используется референсная геометрия для данного пищевого или сельскохозяйственного продукта. В дополнение к характеристикам пищевого или сельскохозяйственного продукта, подлежащего облучению (рН, плотность, возраст, жизнестойкость, активность воды, температура продукта в ходе эксперимента и т.д.), необходимо приводить дозиметрические данные, включающие значения и . Хотя это и невозможно для очень малых образцов, лучшим вариантом представления результатов является включение в отчет графических данных (карты доз), касающихся вариаций поглощенной дозы, которые имеют место внутри облучаемого образца. Для оценки погрешности, связанной с вариациями и флуктуациями в ходе эксперимента, используют статистические характеристики, такие как стандартная погрешность среднего или стандартное отклонение и доверительные интервалы. Эта статистическая информация является неполной, если не указано число наблюдений.

11.1 Фиксируют, когда это уместно, и включают в отчет следующую информацию:

11.1.2 Для ускорителей сообщают наиболее вероятную энергию (включая также данные о фильтрации, если она есть), ток пучка и установленные значения напряжения в ускорителе, скорость конвейера или скорость транспортировки продукта. Для рентгеновских (тормозных) установок указывают положение мишени;

11.1.4 Физические данные облучаемого образца, например, размеры, масса, состав;

11.1.6 Геометрия источника, включая распределение радионуклидов (при необходимости);

11.1.8 Температура и атмосферные условия, поддерживаемые вблизи образца в процессе облучения;

11.1.10 Описание функции отклика или калибровочной кривой дозиметрической системы, отвечающей фактическим условиям эксперимента, с указанием ее прослеживаемости до национальных и международных эталонов;

11.1.12 Число повторений эксперимента;

11.1.14 Описание упаковки или упаковочных материалов, которые находятся в контакте с образцом.

12 Неопределенность измерений

12.2 Составляющие неопределенности должны быть отнесены к одной из двух категорий:

12.2.2 Тип В — Оценивание другими методами.

1 Отнесение неопределенностей к типу А или типу В основано на методике оценки неопределенностей, опубликованной в 1995 г. Международной организацией по стандартизации (ISO) в Руководстве по выражению неопределенности измерений [18]. Цель этого документа заключается в том, чтобы способствовать пониманию того, как развиваются концепции неопределенности, и создать основу для сравнения результатов измерений в международном масштабе.

Приложение А. Компьютерное программное обеспечение

А.1 Компьютерное программное обеспечение

А.1.2 Примерами пакетов программ являются общие статистические пакеты такие как SAS, Statistics, Statlab, Stata, Sigman Stat или Minitab; специализированные пакеты/языки такие как MathCad, Splus или GraphPad или программы для повседневных нужд, встроенные в электронные таблицы, такие как Excel.

А.1.4 Большинство статистических пакетов не имеют программ численного обращения (инвертирования) необходимых для оценки поглощенной дозы и неопределенности поглощенной дозы. Эта операция рассматривается как математическая функция и, соответственно, ее можно найти в более математически ориентированных пакетах, таких как MathCad или MatLab или среди математических функций электронных таблиц.

Источник

Рейтинг
Ufactor
Добавить комментарий