Медико тактическая характеристика радиационных очагов

Радиоактивность и сопровождающие ее ионизирующие излучения — вечно существующие явления. Зарождение и развитие жизни на земле происходило в присутствии естественного радиационного фона.

Естественный радиационный фон образуют космические лучи и радиоактивные элементы, содержащиеся в горных породах, атмосфере, воде, пище, растениях и живых организмах.

Среднегодовые индивидуальные дозы облучения населения за счет естественных источников составляют около 2 мЗв (200 мбэр). Из них примерно 1,675 мЗв (167,5 мбэр) земного происхождения и 0,315 мЗв (31,5 мбэр) — космического.

Приблизительно 2/3 дозы, накопленной человеком от естественных источников, обусловлены РВ, попавшими в организм с вдыхаемым воздухом, пищей или водой (внутреннее облучение). А остальная часть дозы приходится на источники, находящиеся вне организма (внешнее облучение).

Степень радиационного воздействия естественных источников на человека зависит от многих факторов и может отклоняться в сторону увеличения и наоборот. Так, на людей, живущих в горах, в большей мере действует космическое излучение, и уровень облучения растет с высотой, поскольку толщина слоя атмосферы, играющего роль защитного экрана, при этом уменьшается. Неодинаковы и уровни земной радиации для разных мест, что зависит от концентрации РВ в земной коре.

По оценке Научного Комитета по действию атомной радиации ООН, примерно 3/4 среднегодовой дозы облучения населения от земных источников радиации, приходится на радон и продукты его радиоактивного распада. Радон высвобождается повсеместно из земной коры. Поступает в помещения, просачиваясь через фундамент и пол из грунта, выделяясь из материалов строительных конструкций (бетон, фосфогипс и др.), а также с природным газом и водой, особенно при пользовании душем. В плохо вентилируемых помещениях концентрации радона могут быть в 8 раз выше, чем в наружном воздухе.

Радон попадает в организм с вдыхаемым воздухом и, по мнению специалистов, является одной из основных причин рака легких.

Наиболее значимыми из техногенных (созданных человеком) источников радиации являются используемые в медицинских целях (диагностика, лечение) и строительные материалы.

Среднегодовая индивидуальная доза облучения населения от источников радиации, используемых в медицине, около 1,5 мЗв (150 мбэр). Разумеется, индивидуальные дозы, получаемые разными людьми, сильно различаются и колеблются в пределах 0,03–6,0 мЗв (3-600 мбэр). Значительно больше дозы облучения медперсонала, работающего с источниками ионизирующих излучений. Среднегодовая доза, получаемая населением от строительных материалов, около 1 мЗв (100 мбэр), при этом дерево и кирпич обладают значительно меньшей радиоактивностью, чем гранит и пемза, используемые при строительстве. При нормальной работе ядерных энергетических установок, в том числе и реакторов атомных электростанций, выбросы в окружающую среду РВ небольшие. Среднегодовая индивидуальная доза населения от всех действующих на земле атомных электростанций равна 0,00017 мЗв (0,017 мбэр). Эта доза является незначительным вкладом в среднюю суммарную дозу, получаемую населением от всех источников неаварийного облучения, составляющую около 5 мЗв (500 мбэр) в год.

Приведенные цифры отнесены к условиям нормальной (неаварийной) работы атомных энергетических установок. Однако, дозы облучения населения при авариях, сопровождающихся выбросом радиоактивных веществ в окружающую среду, могут оказаться гораздо больше.

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационноопасными объектами.

К радиационноопасным относятся атомные станции (атомные электростанции, атомные станции теплоснабжения, атомные энерготехнологические станции), предприятия ядерного топливного цикла и др.

В настоящее время в мире работают сотни ядерных энергетических установок. Подавляющее их большинство предназначено для выработки электроэнергии. Атомные электростанции (АЭС) экономичнее топливных станций, и при правильной их эксплуатации являются самыми чистыми источниками получения энергии, в отличие от тепловых электростанций, не загрязняют атмосферу дымом и сажей.

На АЭС в качестве ядерного топлива используется преимущественно двуокись урана-238, обогащенная ураном-235. Топливо находится в тепловыделяющих элементах, размещающихся в активной зоне реактора, где происходит цепная ядерная реакция (самоподдерживающаяся реакция деления ядер ядерного топлива). Выделяющееся в ходе реакции тепло используется для получения электроэнергии.

В ходе реакции в тепловыделяющих элементах накапливаются продукты ядерного деления, около 200 радиоактивных изотопов, которые по своему качественному составу не отличаются от продуктов, образующихся при взрывах ядерных боеприпасов. Количественное различие между продуктами ядерного деления и взрыва заключается в том, что реакция деления в тепловыделяющих элементах протекает не мгновенно, как при ядерном взрыве, а длится многие месяцы. За это время короткоживущие элементы распадаются, при одновременном накоплении продуктов деления с большим периодом полураспада.

Количество и изотопный состав продуктов ядерного деления зависит от типа, энергетической мощности и продолжительности работы реактора.

За время эксплуатации атомных энергетических станций в ряде стран произошло более 100 аварий с выбросом радиоактивных веществ в окружающую среду.

Выброс РВ за пределы ядерно-энергетического реактора, в результате чего может создаваться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют: локальные аварии (радиационные последствия ограничиваются одним зданием, сооружением с возможным облучением персонала), местные аварии (радиационные последствия ограничиваются территорией АЭС) и общие аварии (радиационные последствия распространяются за границу территории АЭС).

26 апреля 1986 г. произошла крупная авария на 4-м блоке Чернобыльской АЭС с частичным разрушением активной зоны реактора и выбросом РВ за пределы блока. Поскольку авария произошла перед остановкой блока на плановый ремонт, в реакторе накопилось большое количество радиоактивных продуктов деления. Суммарный выброс продуктов деления, не считая радиоактивных благородных газов, составила 50 МКи (миллионов кюри), что составляет примерно 3,5% общего количества радиоактивных веществ в реакторе на момент аварии.

Выброс продолжался с 26 апреля по 5 мая 1986 г. в разных атмосферных условиях (направление и скорость ветра и др.), поэтому РВ распространялись по нескольким направлениям под влиянием движения приземных слоев воздуха, загрязняя местность с разной степенью интенсивности, создавая мозаичную картину на местности.

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом) радиоактивных выпадений на местности (продукты деления, выпадающие из радиоактивного облака), внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами.

В дальнейшем, в течение многих лет, накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

Важной особенностью аварийного выброса РВ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации и санитарной обработки.

Доля активности радиоактивных веществ, выброшенных из реактора при аварии на Чернобыльской АЭС, составила: йод-131 — 20%; цезий-137 — 13%; цезий-134 — 10%; барий-140 — 5,6%; стронций-89 — 4%; стронций-90 — 4% и другие — менее 4%.

В связи с тем, что период полураспада основных продуктов деления, вызвавших радиоактивное загрязнение, относительно велик, за исключением йода-131, уменьшение мощности дозы происходит медленно. Например, мощность дозы γ-излучения на местности к концу первого года уменьшается в 90 раз по сравнению с мощностью дозы на 1 час после аварии. При заражении же территории продуктами ядерного взрыва, мощность дозы за этот срок уменьшается в 20 тыс раз.

В первые месяцы, особенно дни и недели, значительную опасность представляет йод-131, поступающий в организм (инкорпорация) с вдыхаемым воздухом, а также с загрязненными пищевыми продуктами и водой. Этот радиоактивный изотоп йода, попадая из крови в небольшую по объему и массе (25-30 г) щитовидную железу, накапливается в ней. При распаде йода-131 выделяются β-частицы, непосредственно воздействующие на ткани железы. Учитывая короткий период полураспада йода-131 (8 дней), создается опасность интенсивного облучения этой весьма чувствительной к радиации эндокринной железы.

Радиоактивный стронций накапливается в костях, а цезий — в мышечной ткани. Период полураспада этих радиоактивных веществ около 30 лет, что обусловливает возможность длительного их поступления в организм с водой и пищевыми продуктами, выращенными на загрязненной территории.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. Складывающаяся при этом радиационная обстановка не столь сложная, как при многократном или растянутом во времени выбросе радиоактивных веществ и резко меняющихся метеорологических условиях.

След радиоактивного облака, формирующийся в результате выпадения радио­активных веществ из облака на поверхность земли при одноразовом выбросе, имеет вид эллипса. На территории следа условно выделяются зоны радиоактивного загрязнения (М, А, Б, В и Г), характеризующиеся мощностью дозы излучения на 1 час после аварии и дозами излучения на внешней и внутренней границах каждой зоны, за первый год с момента аварии (табл. 21).

Источник

Рейтинг
Ufactor
Добавить комментарий