ЛЕКЦИЯ 2.
СОЛНЕЧНАЯ РАДИАЦИЯ.
План:
1.Значение солнечной радиации для жизни на Земле.
2. Виды солнечной радиации.
3. Спектральный состав солнечной радиации.
4. Поглощение и рассеивание радиации.
5.ФАР (фотосинтетически активная радиация).
6. Радиационный баланс.
1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.
Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.
Солнечная энергия является основным условием существования биосферы и одним из главных климатообразующих факторов. За счет энергии Солнца воздушные массы в атмосфере непрерывно перемещаются, что обеспечивает постоянство газового состава атмосферы. Под действием солнечной радиации испаряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.
Солнечная энергия — непременное условие существования зеленых растений, превращающих в процессе фотосинтеза солнечную энергию в высокоэнергетические органические вещества.
Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой солнечным излучением. Вследствие различной реакции на интенсивность освещенности все формы растительности делят на светолюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полеганию посевов. В загущенных посевах кукурузы из-за слабой освещенности солнечной радиацией ослабляется образование початков на растениях.
Солнечная радиация влияет на химический состав сельскохозяйственной продукции. Например, сахаристость свеклы и плодов, содержание белка в зерне пшеницы непосредственно зависят от числа солнечных дней. Количество масла в семенах подсолнечника, льна также возрастает с увеличением прихода солнечной радиации.
Освещенность надземной части растений существенно влияет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.
Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фактор. Первая из них — собственно прорастание спор и проникновение заразного начала в ткани поражаемой культуры — в большинстве случаев не зависит от наличия и интенсивности света. Вторая — после прорастания спор — наиболее активно проходит при повышенной освещенности.
Положительное действие света сказывается также на скорости развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем короче инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патогена возрастает плодовитость
Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).
Продолжительность освещения и растения. Ритм солнечной радиации (чередование светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами установлена зависимость перехода растений к генеративному развитию от определенного соотношения длины дня и ночи. В связи с этим культуры по фотопериодической реакции можно классифицировать по группам: короткого дня, развитие которых задерживается при продолжительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;
длинного дня до 12-13час., требующие для своего развития продолжительного освещения. Их развитие ускоряется, когда продолжительность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;
нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.
Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня — на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к северу и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кругом в зимние месяцы Солнце вообще не поднимается над горизонтом. В средних же широтах, например в Москве, продолжительность дня в течение года меняется от 7 до 17,5 ч.
2. Виды солнечной радиации.
Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.
ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозолями, облаками.
Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.
S – количество тепла, получаемого перпендикулярной к лучу поверхностью,
ho – высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.
На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.
Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца
РАССЕЯНАЯ РАДИАЦИЯ D – часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.
СУММАРНАЯ РАДИАЦИЯ Q — состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .
Соотношение между прямой и рассеянной радиацией в составе суммарной радиации зависит от высоты Солнца, облачности и загрязненности атмосферы, высоты поверхности над уровнем моря. С увеличением высоты Солнца доля рассеянной радиации при безоблачном небе уменьшается. Чем прозрачнее атмосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная радиация полностью состоит из рассеянной радиации. Зимой вследствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе суммарной заметно увеличивается.
Свет и тепло, получаемые растениями от Солнца, — результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах радиации, получаемых поверхностью за сутки, месяц, вегетационный период, год.
Отраженная солнечная радиация. Альбедо . Суммарная радиация, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной радиации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно характеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Альбедо обычно выражают в процентах:
Наблюдения показывают, что альбедо различных поверхностей изменяется в сравнительно узких пределах (10…30 %), исключение составляют снег и вода.
Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе изменения теплового режима орошаемых полей. Вследствие уменьшения альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выраженный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо наблюдают в околополуденные часы, а в течение года — летом.
Собственное излучение Земли и встречное излучение атмосферы. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти полностью поглощается водяным паром, капельками воды и углекислым газом, содержащимися в воздухе. Излучение Земли зависит от температуры ее поверхности.
Атмосфера, поглощая небольшое количество солнечной радиации и практически всю энергию, излучаемую земной поверхностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое пространство, а около 70 % приходит к поверхности Земли и называется встречным излучением атмосферы (Еа).
Количество энергии, излучаемое атмосферой, прямо пропорционально ее температуре, содержанию углекислого газа, озона и облачности.
Поверхность Земли поглощает это встречное излучение почти целиком (на 90…99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.
Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным излучением: Еэф.
Еэф= Е3-Еа
В ясные и малооблачные ночи эффективное излучение гораздо больше, чем в пасмурные, поэтому больше и ночное охлаждение земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного излучения 70…140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнечной радиации.
3. Спектральный состав радиации.
Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на коротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиацию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения — от 4 до 120 мкм. Следовательно, потоки солнечного излучения (S, D, RK) относятся к коротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) — к длинноволновой.
Спектр солнечной радиации можно разделить на три качественно различные части: ультрафиолетовую (Y < 0,40 мкм), видимую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра солнечной радиации лежит рентгеновское излучение, а за инфракрасной — радиоизлучение Солнца. На верхней границе атмосферы на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 — на видимую и 47 % — на инфракрасную.
Радиацию, излучаемую Землей и атмосферой, называют дальней инфракрасной радиацией.
Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые процессы, но ускоряет прохождение этапов формирования репродуктивных органов у растений.
Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее тепловом эффекте, что существенно влияет на рост и развитие растений.
Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.
Видимая часть солнечного спектра , во-первых, создает освещенность. Во-вторых, с областью видимой радиации почти совпадает (захватывая частично область ультрафиолетовой радиации) так называемая физиологическая радиация (А, = = 0,35…0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.
4. Поглощение и рассеивание радиации в атмосфере.
Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.
Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.
К= добавить формулу.
Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.
Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная радиация, проходя через атмосферу, частично рассеивается. В чистом и сухом воздухе интенсивность коэффициента молекулярного рассеяния подчиняется закону Релея:
к= с/ Y 4 ,
где С — коэффициент, зависящий от числа молекул газа в единице объема; X — длина рассеиваемой волны.
Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как первоначальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.
В воздухе, содержащем примеси (мелкие капельки воды, кристаллики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесоватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают солнечные лучи, а диффузно их отражают. В результате облака, освещенные Солнцем, имеют белый цвет.
5. ФАР (фотосинтетическиактивная радиация)
Фотосинтетически активная радиация. В процессе фотосинтеза используется не весь спектр солнечной радиации, а только его
часть, находящаяся в интервале длин волн 0,38…0,71 мкм, — фотосинтетически активная радиация (ФАР).
Известно, что видимая радиация, воспринимаемая глазом человека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.
Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья поглощают сине-фиолетовые (X = 0,48…0,40 мкм) и оранжево-красные (X = 0,68 мкм) лучи, менее — желто-зеленые (А. = 0,58…0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.
У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, приходится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск красный). Поэтому энергия прямого солнечного света мало участвует в процессе фотосинтеза.
Так как ФАР является одним из важнейших факторов продуктивности сельскохозяйственных растений, информация о количестве поступающей ФАР, учет ее распределения по территории и во времени имеют большое практическое значение.
Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38…0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интенсивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеянной или суммарной радиации с помощью коэффициентов, предложенных, X. Г. Тоомингом и:
Qфар = 0,43 S » +0,57 D);
составлены карты распределения месячных и годовых сумм Фар на территории России.
Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:
КПИфар= (сумма Q / фар/сумма Q / фар) 100%,
где сумма Q / фар — сумма ФАР, затрачиваемая на фотосинтез за период вегетации растений; сумма Q / фар — сумма ФАР, поступающая на посевы за этот период;
Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые — 0,5…1,5 %; хорошие-1,5…3,0; рекордные — 3,5…5,0; теоретически возможные — 6,0…8,0 %.
6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ
Разность между приходящими и уходящими потоками лучистой энергии называют радиационным балансом земной поверхности (В).
Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являются излучение земной поверхности и отраженная солнечная радиация:
B = S / + D + Ea — Е3- Rk
Уравнение можно записать и в другом виде: B = Q — RK — Еэф.
Для ночного времени уравнение радиационного баланса имеет следующий вид:
В = Еа — Е3, или В = -Еэф.
Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиационный баланс днем положительный, а ночью — отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1…2 ч до захода Солнца.
Годовой радиационный баланс в районах, где устанавливается устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое — положительные.
Радиационный баланс земной поверхности существенно влияет на распределение температуры в почве и приземном слое атмосферы, а также на процессы испарения и снеготаяния, образование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).
Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной посевами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и развитие растений, формирование урожая, его количество и качество.
Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятельной поверхности является мульчирование (покрытие почвы тонким слоем торфяной крошки, перепревшим навозом, древесными опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.
* Деятельная поверхность — поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отдает излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.
Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи — отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.
При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.
Радиация солнца: спектральный состав
Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.
Наше светило
Энергия солнечных лучей переходит в тепло меньшей частью — в атмосфере, большей — на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.
Солнечная радиация: определение
Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина — энергетическая освещенность — в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) — дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Однородна ли солнечная радиация? Виды ее после всех «потерь» в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.
Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.
Дневной свет
А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями — собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).
Под ней подразумевается общее количество радиации, падающей на земную поверхность, — и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.
Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат — тепла ночью.
О географическом распределении радиации
Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого — повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново — в северном полушарии меньше, в районе снежной и малооблачной Антарктиды — больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).
Распределение баланса по карте
Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.
В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.
А как у нас?
Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте — Карпаты с южными областями Украины.
О солнечной инсоляции
При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия — туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.
Все виды солнечных лучей достигают земной поверхности тремя путями — в виде прямой, отраженной и рассеянной солнечной радиации.Прямая солнечная радиация — это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум — утром и вечером; от времени года: максимум — летом, минимум — зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей). Отраженная солнечная радиация — это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые — в меньшей степени.
(http://new-med-blog.livejournal.com/204
Радиационный баланс Радиационный баланс земной поверхности — разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности — приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы; — расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.
Тепловой баланс земной поверхности — алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются: — радиационный баланс; — затрата тепла на испарение; — турбулентный теплообмен между поверхностью океана и атмосферой; — вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и — горизонтальная океаническая адвекция.
Измерение солнечной радиации.
(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)
При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.
Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.
(http://www.constructioncheck.ru/default.a spx?textpage=5)
Количество поступающей к земной поверхности прямой солнечной радиации (S) в условиях безоблачного неба зависит от высоты солнца и прозрачности . В таблице для трех широтных зон приведено распределении месячных сумм прямой радиации при безоблачном небе (возможных сумм) в виде осредненных значений для центральных месяцев сезонов и года.
Повышенный приход прямой радиации в Азиатской части обусловлен более высокой прозрачностью атмосферы в этом регионе. Высокие значения прямой радиации летом в северных районах России объясняются сочетанием высокой прозрачности атмосферы и большой продолжительностью дня
Снижает приход прямой радиации и может существенно изменить ее суточный и годовой ход. Однако при средних условиях облачности астрономический фактор является преобладающим и, следовательно, максимум прямой радиации наблюдается при наибольшей высоте солнца.
В большей части континентальных районов России в весенне-летние месяцы прямая радиация в дополуденные часы больше, чем в послеполуденные. Это связано с развитием конвективной облачности в послеполуденные часы и с уменьшением прозрачности атмосферы в это время суток по сравнению с утренними часами. Зимой соотношение до- и послеполуденных значений радиации обратное — дополуденные значения прямой радиации меньше в связи с утренним максимумом облачности и уменьшением ее во вторую половину дня. Разница между до- и послеполуденными значениями прямой радиации может достигать 25–35%.


В годовом ходе максимум прямой радиации приходится на июнь-июль за исключением районов Дальнего Востока, где происходит его смещение на май, а на юге Приморья в сентябре отмечается вторичный максимум. Максимальная месячная сумма прямой радиации составляет на территории России 45–65% от возможной при безоблачном небе и даже на юге Европейской части она достигает лишь 70%. Минимальные значения отмечаются в декабре и январе.
Вклад прямой радиации в суммарный приход при действительных условиях облачности достигает максимума в летние месяцы и составляет в среднем 50–60%. Исключением является Приморский край, где наибольший вклад прямой радиации приходится на осенние и зимние месяцы.
Распределение прямой радиации при средних (действительных) условиях облачности по территории России в значительной степени зависит от . Это приводит к заметному нарушению зонального распределения радиации в отдельные месяцы. Особенно это проявляется в весенний период. Так, в апреле отмечается два максимума — один в южных районах и Амурской области, второй — на северо-востоке Якутии и на , что также является результатом сочетания высокой прозрачности атмосферы, большой повторяемости ясного неба и продолжительности дня.
Приведенные на картах данные относятся к действительным условиям облачности.
ЛЕКЦИЯ 3
Солнечная радиация, достигшая земной поверхности, частично отражается от нее, а частично поглощается Землей. Однако Земля не только поглощает радиацию, но и сама излучает длинноволновую радиацию в окружающую атмосферу. Атмосфера, поглощая некоторую часть солнечной радиации и большую часть излучения земной поверхности, сама тоже излучает длинноволновую радиацию. Большая часть этого излучения атмосферы направлена к земной поверхности. Она называется встречным излучением атмосферы .
Радиационный баланс состоит из коротковолновой и длинноволновой радиации. Он включает в себя следующие элементы, называемые составляющими радиационного баланса: прямая радиация, рассеянная радиация, отраженная радиация (коротковолновая), излучение земной поверхности, встречное излучение атмосферы .
Прямая солнечная радиация
Длины волн солнечной радиации, достигающей земной поверхности, лежат в интервале 0,29-4,0 мкм. Примерно половина ее энергии приходится на фртосинтетически активную радиацию . В области ФАР ослабление радиации с уменьшением высоты Солнца происходит быстрее, чем в области инфракрасной радиации. Приход прямой солнечной радиации, как уже указывалось, зависит от высоты Солнца над горизонтом, меняющейся как в течение суток, так и в течение года. Это обусловливает суточный и годовой ход прямой радиации.
При продвижении от полюсов к экватору приход прямой радиации в любое время года возрастает, так как при этом увеличивается полуденная высота Солнца.
Рассеянная радиация
Снежный покров, отражающий до 70-90% прямой радиации, увеличивает рассеянную радиацию, которая затем рассеивается в атмосфере. С увеличением высоты места над уровнем моря рассеянная радиация при ясном небе уменьшается.
Суммарная радиация
Она является основной составляющей радиационного баланса. Её спектральный состав по сравнению с прямой и рассеянной радиацией более устойчив и почти не зависит от высоты Солнца, когда, она составляет более 15°.
Приход суммарной радиации при наличии облачности меняется в больших пределах. Наибольший приход ее наблюдается при ясном небе или при небольшой облачности, не закрывающей Солнца.
Отраженная радиация. Альбедо
Альбедо поверхности зависит от ее цвета, шероховатости, влажности и других свойств.
Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2- 5%, при высоте Солнца меньше 10° А = 50- 70%. Большое альбедо льда и снега обусловливает замедленный ход весны в полярных районах и сохранение там вечных льдов.
Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее — утром и вечером. Это связано с тем, что при малой высоте Солнца в составе суммарной радиации возрастает доля рассеянной, которая в большей степени, чем прямая радиация, отражается от шероховатой подстилающей поверхности.
Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.
В умеренных широтах при безоблачном небе излучение атмосферы составляет 280-350 Вт/м², а в случае облачного неба оно на 20-30% больше. Около 62-64% этого излучения направлено к земной поверхности. Приход его на земную поверхность составляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .
Суточный ход эффективного излучения характеризуется максимумом в 12-14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излучения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выражен слабее, чем в районах, расположенных в глубине континента
Если приход радиации больше расхода, то радиационный баланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отрицателен. Примерно за 1-2 ч до захода Солнца он становится отрицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.
Методы измерения солнечной радиации и составляющих радиационного баланса
Относительные приборы применяются при регулярных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко используются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов служат термобатареи, составленные из двух металлов (обычно манганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и возникает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, которые определяются для данной пары: актинометрический прибор — гальванометр.
Пиранометр (М-80М) Янишевского служит для измерения суммарной и рассеянной радиации, приходящей на горизонтальную поверхность.
Альбедометр — это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устройство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбедо подстилающей поверхности. Для полевых измерений используют альбедометр походный М-69.
Кроме рассмотренных приборов, используют также люксметры — фотометрические приборы для измерения освещенности, спектрофотометры, различные приборы для измерения ФАР и т. д. Многие актинометрические приборы приспособлены для непрерывной записи составляющих радиационного баланса.
В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для наблюдений среди растений наиболее удобны походные альбедометры и люксметры, а также специальные микропиранометры.