Прямая и рассеянная радиация

ЛЕКЦИЯ 2.

СОЛНЕЧНАЯ РАДИАЦИЯ.

План:

1.Значение солнечной радиации для жизни на Земле.

2. Виды солнечной радиации.

3. Спектральный состав солнечной радиации.

4. Поглощение и рассеивание радиации.

5.ФАР (фотосинтетически активная радиация).

6. Радиационный баланс.

1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.

Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

Солнечная энергия — непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них — собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры — в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая — после прорастания спор — наиболее активно проходит при повышенной освещенности.

Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня — на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

2. Виды солнечной радиации.

Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.

S количество тепла, получаемого перпендикулярной к лучу поверхностью,

ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.

СУММАРНАЯ РАДИАЦИЯ Q состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .

Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

Свет и тепло, получаемые растениями от Солнца, — результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

Отраженная солнечная радиация. Альбедо . Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10…30 %), ис­ключение составляют снег и вода.

Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года — летом.

Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90…99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

Еэф= Е3-Еа

В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70…140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

3. Спектральный состав радиации.

Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения — от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) — к длинноволновой.

Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y < 0,40 мкм), ви­димую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра сол­нечной радиации лежит рентгеновское излучение, а за инфра­красной — радиоизлучение Солнца. На верхней границе атмос­феры на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 — на видимую и 47 % — на инфракрасную.

Радиацию, излучаемую Землей и атмосферой, называют даль­ней инфракрасной радиацией.

Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые про­цессы, но ускоряет прохождение этапов формирования репро­дуктивных органов у растений.

Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее теп­ловом эффекте, что существенно влияет на рост и развитие рас­тений.

Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.

Видимая часть солнечного спектра , во-первых, создает осве­щенность. Во-вторых, с областью видимой радиации почти со­впадает (захватывая частично область ультрафиолетовой радиа­ции) так называемая физиологическая радиация (А, = = 0,35…0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.

4. Поглощение и рассеивание радиации в атмосфере.

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.

Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.

К= добавить формулу.

Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.

Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная ради­ация, проходя через атмосферу, частично рассеивается. В чис­том и сухом воздухе интенсивность коэффициента молекуляр­ного рассеяния подчиняется закону Релея:

к= с/ Y 4 ,

где С — коэффициент, зависящий от числа молекул газа в единице объема; X — длина рассеиваемой волны.

Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как перво­начальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.

В воздухе, содержащем примеси (мелкие капельки воды, кри­сталлики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесо­ватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают сол­нечные лучи, а диффузно их отражают. В результате облака, ос­вещенные Солнцем, имеют белый цвет.

5. ФАР (фотосинтетическиактивная радиация)

Фотосинтетически активная радиация. В процессе фотосинте­за используется не весь спектр солнечной радиации, а только его

часть, находящаяся в интервале длин волн 0,38…0,71 мкм, — фо­тосинтетически активная радиация (ФАР).

Известно, что видимая радиация, воспринимаемая глазом че­ловека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.

Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья погло­щают сине-фиолетовые (X = 0,48…0,40 мкм) и оранжево-крас­ные (X = 0,68 мкм) лучи, менее — желто-зеленые (А. = 0,58…0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.

У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38…0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных, X. Г. Тоомингом и:

Qфар = 0,43 S » +0,57 D);

составлены карты распределения месячных и годовых сумм Фар на территории России.

Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

КПИфар= (сумма Q / фар/сумма Q / фар) 100%,

где сумма Q / фар — сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q / фар — сумма ФАР, поступающая на посевы за этот период;

Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые — 0,5…1,5 %; хорошие-1,5…3,0; рекордные — 3,5…5,0; теорети­чески возможные — 6,0…8,0 %.

6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

B = S / + D + Ea — Е3- Rk

Уравнение можно записать и в другом виде: B = Q RK — Еэф.

Для ночного времени уравнение радиационного баланса име­ет следующий вид:

В = Еа — Е3, или В = -Еэф.

Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью — отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1…2 ч до захода Солнца.

Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое — положительные.

Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

* Деятельная поверхность — поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.

Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи — отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.

При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.

Радиация солнца: спектральный состав

Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.

Наше светило

Энергия солнечных лучей переходит в тепло меньшей частью — в атмосфере, большей — на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.

Солнечная радиация: определение

Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина — энергетическая освещенность — в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) — дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Однородна ли солнечная радиация? Виды ее после всех «потерь» в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.

Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.

Дневной свет

А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями — собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).

Под ней подразумевается общее количество радиации, падающей на земную поверхность, — и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.

Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат — тепла ночью.

О географическом распределении радиации

Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого — повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново — в северном полушарии меньше, в районе снежной и малооблачной Антарктиды — больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).

Распределение баланса по карте

Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.

В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.

А как у нас?

Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте — Карпаты с южными областями Украины.

О солнечной инсоляции

При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия — туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.

Все виды солнечных лучей достигают земной поверхности тремя путями — в виде прямой, отраженной и рассеянной солнечной радиации.Прямая солнечная радиация — это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум — утром и вечером; от времени года: максимум — летом, минимум — зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей). Отраженная солнечная радиация — это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые — в меньшей степени.

(http://new-med-blog.livejournal.com/204

Радиационный баланс Радиационный баланс земной поверхности — разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности — приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы; — расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Тепловой баланс земной поверхности — алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются: — радиационный баланс; — затрата тепла на испарение; — турбулентный теплообмен между поверхностью океана и атмосферой; — вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и — горизонтальная океаническая адвекция.

Измерение солнечной радиации.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

(http://www.constructioncheck.ru/default.a spx?textpage=5)

Количество поступающей к земной поверхности прямой солнечной радиации (S) в условиях безоблачного неба зависит от высоты солнца и прозрачности . В таблице для трех широтных зон приведено распределении месячных сумм прямой радиации при безоблачном небе (возможных сумм) в виде осредненных значений для центральных месяцев сезонов и года.

Повышенный приход прямой радиации в Азиатской части обусловлен более высокой прозрачностью атмосферы в этом регионе. Высокие значения прямой радиации летом в северных районах России объясняются сочетанием высокой прозрачности атмосферы и большой продолжительностью дня

Снижает приход прямой радиации и может существенно изменить ее суточный и годовой ход. Однако при средних условиях облачности астрономический фактор является преобладающим и, следовательно, максимум прямой радиации наблюдается при наибольшей высоте солнца.

В большей части континентальных районов России в весенне-летние месяцы прямая радиация в дополуденные часы больше, чем в послеполуденные. Это связано с развитием конвективной облачности в послеполуденные часы и с уменьшением прозрачности атмосферы в это время суток по сравнению с утренними часами. Зимой соотношение до- и послеполуденных значений радиации обратное — дополуденные значения прямой радиации меньше в связи с утренним максимумом облачности и уменьшением ее во вторую половину дня. Разница между до- и послеполуденными значениями прямой радиации может достигать 25–35%.

В годовом ходе максимум прямой радиации приходится на июнь-июль за исключением районов Дальнего Востока, где происходит его смещение на май, а на юге Приморья в сентябре отмечается вторичный максимум. Максимальная месячная сумма прямой радиации составляет на территории России 45–65% от возможной при безоблачном небе и даже на юге Европейской части она достигает лишь 70%. Минимальные значения отмечаются в декабре и январе.

Вклад прямой радиации в суммарный приход при действительных условиях облачности достигает максимума в летние месяцы и составляет в среднем 50–60%. Исключением является Приморский край, где наибольший вклад прямой радиации приходится на осенние и зимние месяцы.

Распределение прямой радиации при средних (действительных) условиях облачности по территории России в значительной степени зависит от . Это приводит к заметному нарушению зонального распределения радиации в отдельные месяцы. Особенно это проявляется в весенний период. Так, в апреле отмечается два максимума — один в южных районах и Амурской области, второй — на северо-востоке Якутии и на , что также является результатом сочетания высокой прозрачности атмосферы, большой повторяемости ясного неба и продолжительности дня.

Приведенные на картах данные относятся к действительным условиям облачности.

ЛЕКЦИЯ 3

Солнечная радиация, достигшая земной поверхности, частично отражается от нее, а частично поглощается Землей. Однако Земля не только поглощает радиацию, но и сама излучает длинно­волновую радиацию в окружающую атмосферу. Атмосфера, по­глощая некоторую часть солнечной радиации и большую часть излучения земной поверхности, сама тоже излучает длинноволновую радиацию. Большая часть этого излучения атмосферы направлена к земной поверхности. Она называется встречным излу­чением атмосферы .

Радиационный баланс состоит из коротковолновой и длинно­волновой радиации. Он включает в себя следующие элементы, называемые составляющими радиационного баланса: прямая ра­диация, рассеянная радиация, отраженная радиация (ко­ротковолновая), излучение земной поверхности, встречное излучение атмосферы .

Прямая солнечная радиация

Длины волн солнечной радиации, достигающей земной поверх­ности, лежат в интервале 0,29-4,0 мкм. Примерно половина ее энергии приходится на фртосинтетически активную радиацию . В области ФАР ослабление радиации с уменьшением высоты Солнца происходит быстрее, чем в области инфракрасной радиа­ции. Приход прямой солнечной радиации, как уже указывалось, зависит от высоты Солнца над горизонтом, меняющейся как в те­чение суток, так и в течение года. Это обусловливает суточный и годовой ход прямой радиации.

При продвижении от полюсов к экватору приход прямой ра­диации в любое время года возрастает, так как при этом увеличивается полуденная вы­сота Солнца.

Рассеянная радиация

Снежный покров, отражающий до 70-90% прямой радиации, увеличивает рассеянную радиацию, которая затем рассеивается в атмосфере. С увеличением высоты места над уровнем моря рас­сеянная радиация при ясном небе уменьшается.

Суммарная радиация

Она является основной составляющей радиа­ционного баланса. Её спектральный состав по сравнению с пря­мой и рассеянной радиацией более устойчив и почти не зависит от высоты Солнца, когда, она составляет более 15°.

Приход суммарной радиации при наличии облачности меняет­ся в больших пределах. Наибольший приход ее наблюдается при ясном небе или при небольшой облачности, не закрывающей Солнца.

Отраженная радиация. Альбедо

Альбедо поверхности зависит от ее цвета, шероховатости, влажности и других свойств.

Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2- 5%, при высоте Солнца мень­ше 10° А = 50- 70%. Большое альбедо льда и снега обусловлива­ет замедленный ход весны в полярных районах и сохранение там вечных льдов.

Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее — утром и вечером. Это связано с тем, что при ма­лой высоте Солнца в составе суммарной радиации возрастает до­ля рассеянной, которая в большей степени, чем прямая радиа­ция, отражается от шероховатой подстилающей поверхности.

Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.

В умеренных широтах при безоблачном небе излучение атмо­сферы составляет 280-350 Вт/м², а в случае облачного неба оно на 20-30% больше. Около 62-64% этого излучения направлено к земной поверхности. Приход его на земную поверхность состав­ляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .

Суточный ход эффективного излучения характеризуется мак­симумом в 12-14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излу­чения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выра­жен слабее, чем в районах, расположенных в глубине континента

Если приход радиации больше расхода, то радиационный ба­ланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отри­цателен. Примерно за 1-2 ч до захода Солнца он становится от­рицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.

Методы измерения солнечной радиации и составляющих радиационного баланса

Относительные приборы применяются при регуляр­ных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко использу­ются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов слу­жат термобатареи, составленные из двух металлов (обычно ман­ганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и воз­никает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, ко­торые определяются для данной пары: актинометрический при­бор — гальванометр.

Пиранометр (М-80М) Янишевского служит для измере­ния суммарной и рассеянной радиации, приходящей на горизон­тальную поверхность.

Альбедометр — это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устрой­ство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбе­до подстилающей поверхности. Для полевых измерений использу­ют альбедометр походный М-69.

Кроме рассмотренных приборов, используют также люкс­метры — фотометрические приборы для измерения освещенно­сти, спектрофотометры, различные приборы для измере­ния ФАР и т. д. Многие актинометрические приборы приспособ­лены для непрерывной записи составляющих радиационного баланса.

В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для на­блюдений среди растений наиболее удобны походные альбедомет­ры и люксметры, а также специальные микропиранометры.

Источник

Рейтинг
Ufactor
Добавить комментарий