Радиоактивный элемент актиноид

Актино́иды (актини́ды

) — семейство, состоящее из 15 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 89—103.

Содержание

  • 1 Изучение и синтез
    • 1.1 От актиния до нептуния
    • 1.2 От плутония
  • 2 Изотопы
  • 3 Распространение в природе
  • 4 Получение
  • 5 Свойства
    • 5.1 Физические свойства
    • 5.2 Химические свойства
  • 6 Соединения
    • 6.1 Оксиды и гидроксиды
    • 6.2 Соли кислот
  • 7 Применение
  • 8 Токсичность
  • 9 Галерея
  • 10 См. также
  • 11 Примечания
  • 12 Литература
  • 13 Для дополнительного чтения

Изучение и синтез

Подобно лантаноидам, актиноиды образуют семейство схожих по свойствам элементов. Из актиноидов выделяют две пересекающиеся группы: «трансурановые элементы» — все следующие в таблице Менделеева за ураном элементы и «трансплутониевые элементы» — все следующие за плутонием.

В настоящее время для получения изотопов трансплутониевых элементов (ТПЭ) используются два основных способа: облучение более лёгких элементов нейтронами или ускоренными заряженными частицами. Первый способ является практически наиболее важным, так как только в ядерных реакторах при облучении исходного материала большим потоком нейтронов возможно получить весовые количества трансплутониевых элементов. Преимущество второго способа в том, что он позволяет получать следующие за плутонием элементы, и нейтронодефицитные изотопы, которые не образуются при нейтронном облучении[3].

От актиния до нептуния

Первыми открытыми актиноидами были уран и торий. Уран открыл М. Клапрот в 1789 году в урановой смоляной руде (название элемента происходит от названия планеты Уран). М. Клапрот, восстанавливая углём жёлтый оксид урана, добыл чёрное вещество, которое ошибочно принял за металл. Только через 60 лет французский исследователь Эжен Мелькиор Пелиго (англ.) изучил его и понял, что это вещество — диоксид урана. Тогда же была неправильно вычислена атомная масса — 120. Только Д. И. Менделеев в 1872 году на основании открытого им закона уточнил атомную массу урана — 240. Экспериментально эту величину подтвердил в 1882 году К. Циммерман[4].

Актиний был открыт в 1899 году помощником М. Склодовской-Кюри А. Дебьерном в отходах от переработки урановой смолки, из которой предварительно были удалены радий и полоний; он был выявлен во фракции, в которой при переработке руды концентрируются лантаноиды. Название элемента «актиний» происходит от лат. actis — луч, сияние. Данный металл был открыт не по его собственному излучению, а по излучению дочерних продуктов распада[4][5].

Из-за высокого сходства актиния и лантана и незначительного распространения актиния долгое время не удавалось выделить его в чистом виде. Чистый актиний был добыт лишь в 1950 году. Для элемента на данный момент известны 31 изотоп с массовыми числами 206—236 и 8 возбуждённых изомерных состояний некоторых его нуклидов. Наиболее стабильным является изотоп актиния 227Ac, который имеет период полураспада T½ = 21,77 года[7].

В 1917 году долгоживущий изотоп протактиния открыли О. Ган и Л. Мейтнер. Название «протактиний» означает, что атом этого элемента способен образовывать актиний. На данный момент известны 29 изотопов протактиния с массовыми числами 212—240 и 3 возбуждённых изомерных состояния некоторых его нуклидов. Наиболее стабилен нуклид 231Pa, период полураспада которого равен 3,28·104 лет[7].

Первым предположил существование трансурановых элементов Энрико Ферми, что явилось результатом ряда его экспериментов в 1934 году[8][9].

Актиноиды на протяжении последних десятилетий досконально изучались Г. Сиборгом и его школой. При участии Сиборга был произведён синтез большинства трансурановых элементов.

От плутония

Трансурановые элементы в природе практически не встречаются. Для их получения используют ядерные реакции, которые проходят в ядерных реакторах. Так, например, уран-238 в реакторе под действием нейтронов частично преобразуется в плутоний-239. При этом происходят следующие реакции:

При дальнейшем поглощении нейтронов 239Pu превращается в 241Pu, который вследствие β-распада переходит в 241Am.

Актиноиды с наибольшими порядковыми номерами получены при бомбардировании ядер урана, плутония, кюрия или калифорния ионами азота, кислорода, углерода, неона, бора на ускорителях тяжёлых ионов. Так, один из первых методов синтеза нобелия — бомбардировка мишени из урана-238 ядрами неона-22 в реакции

Первые изотопы ТПЭ — америций-241 и кюрий-242 — были синтезированы в 1944 году Г. Сиборгом, Джеймсом и А. Гиорсо[13]. Изотопы кюрия были получены при бомбардировке ядер плутония-239 ионами гелия с энергией 32 МэВ:

Также изотопы америция-241 и кюрия-242 были выделены из плутония, облучённого нейтронами в реакторе, где они образовались в результате ядерных превращений[3].

В 1945 году Кеннингем впервые выделил твёрдое соединение одного из ТПЭ — гидроксид америция. В течение последующих 3—4 лет были накоплены миллиграммовые количества америция и микрограммовые количества кюрия, что позволило, в результате облучения америция и кюрия, синтезировать изотопы берклия (Томсон, 1949 год) и калифорния (Томсон, 1950 год). Весовые количества данных элементов были выделены значительно позже, в 1958 году (Кеннингем и Томсон), а первое соединение калифорния (CfOCl) получено лишь в 1960 году (Кеннингем и Уолмен).

Первый изотоп менделевия 256Md был синтезирован в феврале 1955 года (Г. Сиборг и сотрудники) при облучении эйнштейния-253 ионами гелия. Для синтеза следующих за менделевием элементов пришлось использовать новый метод — облучение ядер урана и трансурановых элементов тяжёлыми многозарядными ионами. Ввиду исключительно малого выхода и коротких периодов полураспада изотопов трансменделевиевых элементов, синтезируемых в этих реакциях, их идентификация оказалась очень сложной и не всегда надёжной. Как правило, в первых работах по синтезу элементов с Z⩾102 полученные изотопы идентифицировались чисто физическими методами, по характеру излучения и дочерним продуктам распада.

В 1961 году А. Гиорсо и сотрудниками был получен первый изотоп лоуренсия путём облучения калифорния (в основном калифорния-252) ионами бора-10 и бора-11; массовое число этого изотопа не было точно установлено (возможно, 258 или 259) на тот момент. Более надёжно идентифицирован изотоп лоуренсия 256Lr, синтезированный в 1965 году Г. Флёровым с помощью нуклидов 243Am и 18O.

Изотопы

К 1982 году было известно 24 изотопа актиния, на данный момент известны 31 изотоп актиния и ещё 8 возбуждённых изомерных состояний некоторых его нуклидов[7]. В природе были найдены три изотопа — 225Ac, 227Ac и 228Ac, остальные получаются искусственным путём. На практике применяют три природных изотопа. Актиний-225 является членом радиоактивного ряда нептуния; был впервые обнаружен в 1947 году в качестве продукта распада урана-233. Если выдержать 1 г урана-233 в течение года, то активность образовавшегося в образце 225Ac составит 1,8·106 распадов в минуту. Данный нуклид является α-излучателем с периодом полураспада 10 сут. Актиний-225 по сравнению с актинием-228 менее доступен, но в практическом отношении как радиоактивный индикатор является более перспективным[5].

Актиний-228 является членом радиоактивного ряда тория; был открыт О. Ганом в 1906 году. Данный изотоп образуется при распаде 228Ra. В 1 т тория содержится 5·10−8 г 228Ac. Изотоп является β-излучателем с периодом полураспада 6,15 ч[5].

Уран имеет 25 его изотопов с массовыми числами 217—242[14]. Для урана известно наличие 6 изомерных состояний некоторых его нуклидов. В природе в заметных количествах уран находится в виде трёх изотопов — 234U, 235U и 238U. Из всех остальных важнейшим является 233U, который получается как конечный продукт превращений при облучении 232Th замедленными нейтронами. Ядро 233U обладает эффективным поперечным сечением деления на тепловых нейтронах, по сравнению с 235U. Из большинства изотопов урана наиболее удобным для изучения химических свойств считается уран-238, так как период полураспада составляет 4,4·109 лет[17].

Для большинства нуклидов нептуния с массовым числом от 231 до 241 разброс в значениях периода полураспада составляет от 7,3 мин (240mNp) до 2,2·106 лет[11].

На данный момент известно 19 изотопов кюрия[14]. Наиболее доступные из них — 242Cm, 244Cm являются α-излучателями, но имеют гораздо меньшие, чем у изотопов америция, периоды полураспада. У этих изотопов почти отсутствует γ-излучение, но зато заметным являются спонтанное деление и связанное с ним испускание нейтронов. Более долгоживущие изотопы кюрия(245—248Cm, все α-излучатели) образуются в виде смеси при облучении нейтронами плутония или америция. В этой смеси при не очень продолжительном облучении преобладает кюрий-246, а затем начинает накапливаться кюрий-248. Оба эти изотопа, особенно 248Cm, имеют большие периоды полураспада и гораздо более удобны для проведения химических исследований, чем 242Cm и 244Cm; однако они также обладают довольно большой скоростью спонтанного деления. Наиболее живущий изотоп кюрия — 247Cm — не образуется в больших количествах из-за сильного деления на тепловых нейтронах.

Изотопы калифорния с массовыми числами 237—256 образуются в ядерном реакторе[14], как и другие. Изотоп калифорния-253 является β-излучателем, а все остальные — α-излучателями. Кроме того, изотопы с чётными массовыми числами (250Cf, 252Cf и 254Cf) характеризуются большой скоростью спонтанного деления, особенно изотоп калифорния-254, у которого 99,7 % распадов происходит путём спонтанного деления. Стоит отметить изотоп калифорния-249, который обладает довольно большим периодом полураспада (352 года) и слабым спонтанным делением. У этого изотопа имеется и сильное γ-излучение, которое может значительно облегчить его идентификацию. Изотоп 249Cf не получается в больших количествах в ядерном реакторе вследствие медленного β-распада материнского изотопа 249Bk и большого сечения взаимодействия с нейтронами, однако он может быть накоплен в изотопически чистом виде как продукт β-распада предварительно выделенного 249Bk. Калифорний, выделенный из облучённого в реакторе плутония, содержит в основном изотопы 250Cf и 252Cf (при большом интегральном потоке нейтронов преобладает 252Cf), и работа с ним затруднена из-за мощного нейтронного излучения[3].

Известно 16 изотопов изотопов эйнштейния с массовыми числами от 241 до 257[14]. Наиболее доступным из его изотопов является 253Es — α-излучатель с периодом полураспада 20,47 дней, имеющий относительное слабое γ-излучение и небольшую по сравнению с изотопами калифорния скорость спонтанного деления. При более длительном облучении в реакторе образуется также долгоживущий 254Es (T½=275,5 дней)[3].

Для менделевия известно 15 нуклидов с массовыми числами от 245 до 260[14]. Все исследования свойств изотопов менделевия проводились с 256Md, который распадается главным образом путём электронного захвата (α-излучение ≈ 10 %) с периодом полураспада 77 минут. Известен долгоживущий изотоп 258Md (T½=53 дня), он также является альфа-излучателем. Оба эти изотопа получают из изотопов эйнштейния (соответственно 253Es и 255Es), поэтому возможность получения изотопов менделевия ограничивается количеством имеющегося эйнштейния.

Распространение в природе

Торий и уран имеют самую высокую распространённость среди актиноидов; их атомные кларки равны 3·10−4 % и 2·10−5 % соответственно. В земной коре уран встречается в виде минеральной формы уранинита — U3O8 (смоляная руда, урановая смолка), а также карнотита — KUO2VO4·3H2O, отенита — Ca(UO2)2(PO4)2·nH2O и др. Два последних минерала имеют жёлтый цвет. Уран содержится также почти во всех минеральных формах редкоземельных минералов (фергюсонит, самарскит, эвксенит и др.).

Лидирующие по добыче урана страны[19]:

  • Канада;
  • Австралия;
  • Казахстан;
  • Нигер;
  • Россия.

Уран принадлежит к числу редких и рассеянных элементов. Содержание в земной коре урана составляет примерно 2·10−4 %. Общие запасы урана исчисляются миллионами тонн. Из минеральных форм урана известно около 200 минералов, большинство из них относится к оксидам переменного состава (см. выше: карнотит, отенит)[20].

Распространение актиния в земной коре очень мало (атомный кларк 5·10−15 %). Подсчитано, что общее распространение актиния в земной коре составляет 2600 т, в то время как, например, содержание радия равно 40 млн т[16]. Актиний содержится в таких природных материалах, как сульфидные, силикатные, кислородсодержащие минералы; в природной воде — в ещё меньших количествах, по сравнению с урановыми рудами. Содержание актиния в большинстве природных объектов соответствует изотопному равновесию материнских изотопов 235U. Повышенным содержанием данного элемента обладают такие минералы, как молибденит, халькопирит, касситерит, кварц, пиролюзит и др. Актиний характеризуется невысокой миграционной способностью и перемещением, то есть распространение актиния меньше по сравнению с ураном[5].

Период полураспада самого долгоживущего изотопа 237Np ничтожно мал по сравнению с возрастом Земли, поэтому в природных минералах нептуний практически не встречается. На Земле его нуклиды могут образоваться практически лишь с помощью ядерных реакций. Нептуний находится в минералах как промежуточный продукт распада других изотопов[11].

Наличие плутония в небольших количествах в минеральных формах урана было впервые установлено в 1942 году. Верхний предел распространённости на Земле 244Pu — самого долгоживущего из изотопов плутония — составляет 3·10−22 г/г. Известно, что настуран и карнотит, найденные в Канаде и в штате Колорадо, содержат небольшое количество α-излучающего изотопа плутония 239Pu. Было определено содержание плутония в ряде урановых руд, с последующим выделением плутония из отходов производства 239Pu. Ни в одной из этих минеральных форм (см. таблицу) не было выделено другого изотопа плутония, кроме плутония-239. В образцах лунного грунта плутоний не был обнаружен[21].

Получение

В большинстве случаев для получения чистого вещества элементов применяют разложение химического соединения этого элемента, обычно путём реакции его оксида, фторида и т. д. с водородом. Однако этот метод неприменим к актиноидам, поскольку они встречаются очень редко в природе, и поэтому для их выделения применяются более сложные методы очистки соединений, а затем и получения элементов данной группы.

Аналогично добывают и остальные. Плутоний выделяют из его тетрафторида (PuF4), восстанавливая его:

Металлический уран также добывают из тетрафторида (UF4), но в качестве восстановителя используют магний:

Среди актиноидов наиболее легко добываются торий и уран. Торий добывают преимущественно из монацита. При этом дифосфат тория (Th(PO4)2) с примесями редкоземельных элементов, которые осаждаются при повышенном pH сульфатного раствора, обрабатывают азотной кислотой, а нитрат тория экстрагируют трибутилфосфатом. Ещё лучше из кислых растворов торий отделяется от РЗЭ в присутствии роданид-ионов.

Гидроксид тория растворяют в неорганической кислоте и снова очищают от редкоземельных элементов. Более эффективным считается метод растворения гидроксида тория в азотной кислоте, потому что добытый раствор можно очистить посредством экстракции органическими растворителями:

Но в азотной кислоте ториевый концентрат не полностью растворяется. В хлороводороде он растворяется лучше, образуя хлорид тория и воду.

Можно отделить торий от редкоземельных элементов (когда их концентрация мала) осаждением оксалата тория из кислых растворов. Но самым перспективным считается метод экстрагирования солей тория органическими растворителями, которые не смешиваются с водой[4].

Иногда торий добывают электролизом нагретого фторида в смеси хлоридов натрия и калия. Электролиз проводят при 700—800 °С в графитовом тигле. Очень чистый торий добывают разложением его йодида с помощью метода Ван Аркеля и де Бура.

Когда раствор, который состоит из солей урана, отфильтрован от нерастворимого осадка, уран можно выделить осаждением гидроксидами (в виде (NH4)2U2O7) или пероксидом водорода (в виде UO4·2H2O).

Из данного уравнения видно, что наилучшим растворителем урана при карбонатной переработке является смесь карбоната с его бикарбонатом. Когда берется средний карбонат, то из-за высокого pH раствора часть урана может выпасть в осадок в виде диураната. Из карбонатных растворов диуранат выделяют, восстанавливая его водородом в присутствии никеля. При этом получается нерастворимый тетракарбонат урана[4].

Из анионита уран вымывают раствором нитрата аммония или азотной кислоты.

При действии фтороводорода на диоксид урана добывают тетрафторид урана, который потом можно восстановить магнием до металлического урана:

Для выделения плутония из продуктов расщепления радиоактивных материалов облучённый нейтронами уран растворяют в азотной кислоте. К полученному раствору добавляют восстановитель (FeSO4, или H2O2), который переводит плутоний из степени окисления +6 в +4, а уран остается в виде нитрата уранила (UO2(NO3)2). После обработки восстановителем раствор нейтрализуют карбонатом аммония до pH=8. При этом Pu4+ переходит в осадок[4].

Часто для разделения плутония и других актиноидов, начиная с урана, пользуются экстракцией трибутилфосфатом. Сначала экстрагируют нитраты Pu4+ и U6+, а потом экстрагент приводят в контакт с гидразином и вымывают восстановленный плутоний[4].

Свойства

По свойствам актиноиды сходны с лантаноидами, но между ними есть и отличия. Отличие двух групп объясняется тем, что у актиноидов прерывается заполнение наружных электронных оболочек — шестой (группа 6d) и седьмой (после появления группы электронов 7s2), и при переходе от каждого предыдущего актиноида к последующему происходит (в основном, а начиная с кюрия — исключительно) заполнение f-электронов в пятой электронной оболочке. У актиноидов по аналогии с лантаноидами происходит заполнение f-слоя в четвёртой электронной оболочке[22].

Радиусы ионов актиноидов, подобно ионам лантаноидов, с увеличением порядковых номеров элементов монотонно уменьшаются. Актиноиды-ионы парамагнитны, причём величина грам-ионной магнитной способности для обоих типов катионов одинаково изменяется в зависимости от количества f-электронов[4].

Физические свойства

С физической точки зрения актиноиды — типичные металлы. Все они мягкие, имеют серебристый цвет, достаточно высокую плотность и пластичность. Некоторые из этих металлов можно разрезать ножом. Торий по твёрдости подобен мягкой стали. Из нагретого чистого тория можно раскатывать листы, вытягивать проволоку. Торий почти вдвое легче урана и плутония, но твёрже их обоих. Все актиноиды в той или иной степени радиоактивны. Из них только торий и уран встречаются в природе в заметных количествах.

Для всех актиноидов, кроме актиния, характерен полиморфизм.

  • Радиусы актиноидов. Металлический (пунктирная линия) и ионные (сплошная линия) радиусы актиния и 5f-элементов: 1 — M3+, 2 — M4+, 3 — M5+.

  • Фазовая диаграмма актинидов

Плутоний имеет семь полиморфных модификаций, а уран, нептуний и калифорний — три. Кристаллические структуры протактиния, урана, нептуния и плутония по своей сложности не имеют аналогов среди лантаноидов и более похожи на структуры 3d-переходных металлов. Лёгкие актиноиды в точке плавления имеют объёмно-центрированную решётку, а начиная с плутония — гранецентрированную[20].

Температура плавления актиноидов изменяется при увеличении числа f-электронов нелинейно. С ростом числа данных электронов температура плавления сначала (от протактиния к плутонию) понижается, а затем (от америция к кюрию) повышается. Уникально низкую температуру плавления у плутония объясняют гибридизацией 5f- и 6d-орбиталей и образованием направленных связей в этих металлах. От кюрия до эйнштейния температура плавления снова понижается, а затем возрастает до максимума у фермия. Аналогичная кривая температур плавления повторяется от фермия до лоуренсия[20].

Химические свойства

Все актиноиды являются химически активными металлами.

Различие химических свойств актиноидов и лантаноидов проявляется в том, что актиноиды легче вступают в реакции и имеют разные валентные состояния. Это объясняется меньшим размером 5f-орбиталей по сравнению с 4f-орбиталями, их экранированностью внешними электронами и поэтому способностью к более легкому расширению за пределы 6s- и 6p-орбиталей. Актиноиды склонны к гибридизации. Особенно это характерно для тех элементов, атомы которых имеют малое количество 5f-электронов. Объясняется это тем, что энергии 5f-, 7s- и 6d-подуровней очень близки[4].

  • актиний — +3;
  • торий — +4;
  • протактиний — +5;
  • уран — +6;
  • нептуний — +5;
  • плутоний — +4;
  • америций и остальные актиноиды — +3.

По химическим свойствам актиний напоминает лантан, что объясняется, в первую очередь, их сходными ионными радиусами. Подобно лантану, для актиния свойственна лишь степень окисления +3. Актиний в отличие от лантана проявляет более слабую реакционную способность и более ярко выраженные осно́вные свойства. Среди остальных трёхзарядных ионов Ac3+ выделяется присутствием наиболее слабых кислотных свойств, то есть актиний в водных растворах гидролизуется лишь в незначительной степени[5][20].

Протактиний имеет два валентных состояния — 5 и 4. В отличие от стабильного пятивалентного состояния четырёхвалентный протактиний в растворах чрезвычайно легко окисляется до Pa5+ кислородом воздуха. В связи с этим четырёхвалентный протактиний в растворах получают действием сильных восстановителей в атмосфере водорода. Четырёхвалентный протактиний по химическим свойствам является близким аналогом UIV и тория. Известно, что PaIV образует много кристаллических соединений, изоструктурных с соединениями UIV и тория. Фториды, фосфаты, гипофосфаты, иодаты и фениларсонаты PaIV нерастворимы в воде и в достаточно разбавленных кислотах. Протактиний образует растворимые карбонаты. По гидролитическим свойствам пятивалентный протактиний близок к TaV и NbV. Сложность химического поведения протактиния является следствием появления у атомов данного элемента 5f-орбит[16].

Для нептуния возможны валентности 3, 4, 5, 6 и 7. В растворах он может находиться одновременно в нескольких из них. Это объясняется диспропорционированием пятивалентного нептуния в сильнокислых растворах из-за близости редокс-потенциалов ионных пар нептуния. Наиболее стабильными в растворах являются ионы NpV. В твёрдых соединениях нептуний устойчив и проявляет валентность 4. Ионы NpIII и NpIV, как и других актиноидов, существуют в воде в качестве гидратированных катионов вышеуказанных ионов нептуния. NpIII гидролизуется в слабощелочной среде. Металлический нептуний очень реакционноспособен. Ионы данного элемента отличаются высокой склонностью к образованию координационных соединений и гидролизу[11].

Наибольшим разнообразием отличается америций, у которого достоверно установлено наличие степеней окисления от +2 до +6. Двухвалентный америций получен только в сухих соединениях и в неводных растворах (ацетонитриле). Состояния окисления +3, +5 и +6 характерны для водных растворов америция, хотя известно большое количество соответствующих им твёрдых соединений. Четырёхвалентный америций образует устойчивые твёрдые соединения (диоксид, фторид, гидроксид америция), в водном растворе он существует в виде различных комплексных соединений. Сообщалось, что в щелочном растворе америций может быть окислен до семивалентного состояния, однако эти данные оказались ошибочными. Наиболее устойчивой валентностью америция в водном растворе является +3, в твёрдых соединения +3 и +4[3].

Берклий, наряду с валентностью +3, также проявляет валентность +4, более устойчивую чем у кюрия; ей отвечает ряд твёрдых соединений (фторид, диоксид берклия), а в водном растворе устойчивость иона Bk4+ близка к устойчивости иона Ce4+. У калифорния, эйнштейния и фермия единственной достоверной валентностью является +3. Доказано наличие двухвалентного состояния у менделевия и нобелия, причём у нобелия оно является более устойчивым, чем трёхвалентное. Валентности двух последних трансплутониевых элементов — лоуренсия и резерфордия — очень скудны; известно, что лоуренсий как в растворе, так и в сухих соединениях проявляет только валентность +3; а резерфордий в виде хлорида ведёт себя подобно гафнию, то есть, по-видимому, четырёхвалентен[3].

  • уран: −0,32 В,
  • нептуний: +0,34 В,
  • плутоний: +1,04 В,
  • америций: +1,34 В.

Отсюда напрашивается вывод, что восстановительная способность иона M4+ возрастает от америция до урана.

При реакции с углеродом актиноиды преимущественно создают карбиды с общей формулой MC, MC2, а уран U2C3. С серой они производят сульфиды с общей формулой M2S3 и MS2[4].

Соединения

Оксиды и гидроксиды

Для некоторых актиноидов известно несколько оксидов: M2O3, MO2, M2O5 и MO3. Для всех металлов оксиды M2O3, MO2 и M2O5 — осно́вные, а MO3 — амфоте́рные[4]. Более выражены основные свойства оксидов. Они легко соединяются с водой, образуя основания:

Данные основания плохо растворяются в воде, а по своей активности близки к гидроксидам редкоземельных металлов. Наиболее сильным из этих оснований является гидроксид актиния. Актиний сравнительно легко взаимодействует с водой, вытесняя водород. Все соединения актиния, кроме его чёрного сульфида (Ac2S3), имеют белую окраску[4].

Торий, соединяясь с кислородом, образует лишь диоксид. Его можно получить при сжигании металлического тория в кислороде при температуре в 1000 °C, или нагреванием некоторых его солей:

Диоксид тория является тугоплавким веществом (температура плавления 3220 °C), очень стоек к нагреванию. Из-за этого свойства диоксид тория иногда используют в производстве огнеупорных материалов. Добавление 0,8—1 % ThO2 к чистому вольфраму стабилизирует его структуру; поэтому волоски электроламп имеют лучшую устойчивость при вибрациях[4].

У протактиния получено два оксида: PaO2 (чёрный) и Pa2O5 (белый). Первый из них изоморфен с ThO2. Легче получить Pa2O5. Оба оксида протактиния осно́вные. Для пятивалентного протактиния можно получить Pa(OH)5 — слабое плохо растворимое основание[4].

При реакции оксида урана(VI) с водородом получается диоксид урана, который схож по своим свойствам с ThO2. Этот оксид также является осно́вным. Ему соответствует тетрагидроксид урана (U(OH)4)[4].

Оксиды новых элементов часто исследуются первыми, что связано с их большим значением, лёгкостью получения и с тем фактом, что оксиды обычно служат в качестве промежуточных соединений при получении других веществ.

Соли кислот

Металлы-актиноиды хорошо соединяются с галогенами, создавая соли MHa3 и MHa4 (Ha — галоген), так был получен хлорид калифорния. В 1962 году было синтезировано первое соединение берклия — BkCl3 в количестве 0,000003 мг[4].

Гексафториды актиноидов по свойствам приближаются к ангидридам. В воде они гидролизуются, образуя MO2F2. Также были синтезированы пентахлорид и чёрный гексахлорид урана, но они оба являются нестабильными [4].

Однако в ходе данных реакций восстанавливающий водород может реагировать с самим металлом, образуя соответствующий гидрид металла. С кислотами и водой уран реагирует значительно легче, чем торий[4].

Соли актиноидов легко получаются при растворении соответствующих гидроксидов в кислотах. В свою очередь, нитраты, хлориды, перхлораты и сульфаты актиноидов могут растворяться в воде. Из водных растворов эти соли кристаллизуются, образуя гидраты, например:

  • Th(NO3)4·6H2O,
  • Th(SO4)2·9H2O,
  • Pu2(SO4)3·7H2O.

Ещё одним свойством этих соединений является способность солей актиноидов высшей валентности к легкому гидролизу. Так, бесцветные средние сульфат, хлорид, перхлорат, нитрат тория в растворе быстро переходят в осно́вные соли с химическими формулами Th(OH)2SO4, Th(OH)3NO3.

Своей растворимостью соли трёхвалентных и четырёхвалентных актиноидов подобны солям лантаноидов. Как и для лантана и его аналогов, плохо растворяются в воде фосфаты, фториды, оксалаты, иодаты, карбонаты актиноидов. В этом случае почти все плохорастворимые соли осаждаются в растворе в виде кристаллогидратов, например, ThF4·3H2O, Th(CrO4)2·3H2O[4].

По сравнению с лантаноидами, актиноиды лучше создают координационные соединения. Способность к образованию комплексных соединений у актиноидов увеличивается с увеличением валентности металла. Трёхвалентные актиноиды не образуют фторидных координационных соединений, в то время как четырёхвалентный торий образует соли типа K2ThF6, KThF5 и даже K5ThF9. Для данного металла легко можно получить соответствующие сульфаты, например Na2SO4·Th(SO4)2·5H2O, нитраты, тиоцианаты. Соли с общей формулой M2Th(NO3)6·nH2O имеют координационную природу, в них у тория координационное число равно 12. Ещё легче комплексные соли создают пятивалентные и шестивалентные актиноиды. Достаточно стойкие комплексы образуют торий и уран с роданид-ионами. Эти комплексы имеют повышенную стойкость в неводных растворителях[4].

Применение

Большинство актиноидов, до америция включительно, нашли применение в различных областях науки и техники, например приборостроении (датчики дыма), космических технологиях[4]. Однако наиболее массовым и значимым является применение актиноидов для создания ядерного оружия и применение в качестве топлива в ядерных реакторах, в обоих случаях используется свойство некоторых из актиноидов выделять колоссальную энергию при ядерной реакции — делении ядра, которая при определённых условиях может быть цепной, то есть самоподдерживающейся.

Для атомной энергетики очень важным является уран, особенно его изотоп — уран-235, применяющийся в наиболее распространённых реакторах на тепловых нейтронах, содержание которого в природном уране не превышает 0,72 %. Этот изотоп имеет высокое поперечное сечение захвата тепловых нейтронов, поглощая которые 235U делится с выделением большого количества энергии. Превращающаяся в тепло энергия на один акт деления (200 МэВ), в перерасчёте на 1 г прореагировавшего 235U, даёт примерно 1 МВт·сут. Очень ценным является сопровождение деление урана-235 выделением бо́льшего числа нейтронов, чем их затрачивается[4]. При достижении критической массы урана-235 — 0,8 кг — происходит самоподдерживающаяся цепная ядерная реакция[20]. Как правило, ядро урана делится на 2 осколка с высвобождением 2—3 нейтронов, например:

Также перспективным в ядерной энергетике является использование ядерного цикла, основанного на применении тория-232 и полезного продукта, образующегося при его делении — урана-233. Выделение нейтронов при вынужденном делении урана важно не только для поддержания цепной ядерной реакции и получения большого количества энергии, но и для синтеза более тяжёлых актиноидов. Уран-239 распадается посредством β-распада и образует плутоний-239, который подобно урану-235 способен к спонтанному делению. Первые в мире ядерные реакторы предназначались не для мирных нужд энергетики, а для наработки плутония-239, с целью использования его для создания ядерного оружия.

Торий применяется в качестве легирующего компонента сплавов магния с цинком. Магниевые многокомпонентные сплавы с примесью тория из-за лёгкости и прочности, высокой температуры плавления и пластичности широко используются в авиационной промышленности и в производстве снарядов. Металлический торий имеет хорошую способность в электронной эмиссии. Лампы с ториевыми электродами имеют малый начальный потенциал и долго не выходят из строя[4]. Относительное содержание изотопов тория и урана часто применяется для оценки возраста звёзд[35].

Для тех же целей, что и для плутония-238, можно применять кюрий-242. Также некоторые изотопы калифорния имеют способность к спонтанному делению. Поскольку критическая масса калифорния мала, то считается, что в будущем из него можно будет изготовлять заряды для атомных пуль.

Актиний-227 применяется для изготовления нейтронных источников. Высокое удельное энерговыделение — 14,5 вт/г, возможность получения значительных количеств термически устойчивых соединений актиния — ценные свойства, открывающие хорошие перспективы для использования в термоэлектрических генераторах длительного действия, которые являются пригодными для космических целей. 228Ac применяется в качестве индикатора радиоактивности при химических исследованиях, так как обладает высокоэнергетическим β-излучением с энергией 2,18 МэВ, которое легко регистрируется. Равновесная смесь изотопов 228Ac—228Ra широко используется в качестве источника интенсивного γ-излучения в промышленности и медицине[5].

Широкое применение актиноиды, такие как плутоний, уран, нашли и в ядерном оружии. В XX веке было проведено большое количество испытаний ядерных бомб. К концу XX века массовые испытания ядерного оружия прекратились в связи с улучшением международной обстановки и массовым сокращением количества ядерных вооружений в мире.

Токсичность

Радиоактивные вещества оказывают вредное воздействие на человеческий организм вследствие:

  • местного загрязнения кожи, которое было вызвано, например, проливанием или рассыпанием радиоактивного вещества;
  • внутреннего облучения вследствие попадания в организм радиоактивных изотопов;
  • внешнего чрезмерного облучения наиболее сильными типами — β- и γ-излучением.

Вместе с радием и трансурановыми элементами актиний относится к числу опасных радиоактивных ядов с высокой удельной α-активностью. Наиболее важной особенностью актиния является его способность к накапливанию и удержанию в скелете в качестве поверхностного слоя. На начальном этапе отравления актинием он накапливается в печени. Ещё одна опасность актиния в том, что он подвергается радиоактивному распаду быстрее, чем выводится из организма. Адсорбция актиния из пищеварительного тракта по сравнению с адсорбцией радия незначительна (>0,05 %). Опасность, связанная с загрязнением кожи и попаданием внутрь, объясняется тем, что в процессе распада актиния образуются газообразные радиоактивные вещества (изотопы радона)[5].

Плутоний при поступлении с воздухом, пищей или в кровь через рану оседает в лёгких, печени и костях. Лишь примерно 10 % попадает в другие органы. Атомы плутония задерживаются в организме десятилетиями. Это объясняется биохимическими свойствами плутония и тем, что у изотопов плутония большие периоды полураспада. Отчасти долгое выведение плутония из организма объясняется плохой растворимостью в воде. Все изотопы плутония имеют высокую радиотоксичность, в частности, вследствие того, что часть ядер плутония испускает ионизирующее α-излучение, которое повреждает окружающие клетки. Радиотоксичность находится в обратном отношении с периодом полураспада данного изотопа плутония. Исследования на животных показали, что летальной дозой плутония-244 (наименее радиотоксичного, период полураспада 80 млн лет) является несколько миллиграмм на килограмм ткани. ЛД50 в течение 30 дней для собак после внутривенного введения плутония-244 составляет примерно 0,32 миллиграмма на 1 кг ткани. На основании этих исследований была получена примерная оценка летальной дозы для человека весом 70 кг — 22 мг. При поступлении через органы дыхания поглощение должно быть примерно в 4 раза больше. Этот долгоживущий изотоп плутония проявляет в основном химическую токсичность, подобно нерадиоактивным тяжёлым металлам. Робертом Стоуном, были сделаны расчёты безопасной дозы более короткоживущих изотопов плутония в человеческом организме. Плутоний-239 (период полураспада 24 тыс. лет) в 50 раз менее токсичен, чем радий, и поэтому допустимое содержание плутония-239 в организме, по его расчётам, должно составлять 5 мкг, или 0,3 мкКи. Примечательно, что такое количество плутония трудно рассмотреть даже в современном микроскопе. Вскоре, после испытаний таких доз на животных, данная доза была уменьшена в 5 раз и стала составлять 1 мкг, или 0,06 мкКи. Однако и эта доза была уменьшена, и стала составлять 0,65 мкг, или 0,04 мкКи[28].

  • поступление плутония через органы дыхания — наиболее вероятный (и поэтому наиболее опасный) путь. В данном случае в организме удерживается примерно от 5 до 25 % вдыхаемого вещества. В зависимости от размера частиц и растворимости поглощаемых соединений плутония, поступающий плутоний локализуется в лёгких или в лимфатической системе, либо подвергается поглощению в кровь и переносится затем в печень или кости;
  • поступление плутония через пищу — наименее вероятный способ. В этом случае в кровь поступает лишь примерно 0,05 % растворимых соединений плутония и только 0,01 % нерастворимых. Остальная часть проходит далее по желудочно-кишечному тракту и выводится из организма;
  • при попадании плутония или его соединений в порезы на коже в организме будет удержано до 100 % внесенного вещества.
  1. 1 2 Н. Гринвуд, А. Эрншо. Химия элементов = Chemistry of the Elements / Пер. с англ. — : «Бином. Лаборатория знаний», 2008. — Т. 2. — 670 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-374-6.
  2. Reino W. Hakala. Letters (англ.) // J. Chem. Educ. — 1952. — Iss. 29 (11). — P. 581. — DOI:10.1021/ed029p581.2.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Б. Ф. Мясоедов, Л. И. Гусева, И. А. Лебедев, М. С. Милюкова, М. К. Чмутова. Аналитическая химия трансплутониевых элементов. — : Наука, 1972. — 376 с. — (аналитическая химия элементов). — 1750 экз.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 А. М. Голуб. Общая и неорганическая химия = Загальна та неорганична хiмiя. — Вища школа, 1971. — Т. 2. — 416 с. — 6700 экз.
  5. 1 2 3 4 5 6 7 8 9 10 З. К. Каралова, Б. Ф. Мясоедов. Актиний. — : «Наука», 1982. — 144 с. — (Аналитическая химия элементов). — 1150 экз.
  6. Нобелий и лоуренсий были практически одновременно открыты советскими и американскими учёными
  7. 1 2 3 4 5 6 7 8
  8. Э. Ферми. О возможном нахождении элемента с атомным номером выше 92 = Possible Production of Elements of Atomic Number Higher than 92 // УФН. — 1934. — Т. 14, № 7. — С. 829—832.
  9. Кудрявцев П. С. Опыты Ферми // Курс истории физики. — 2-е изд., испр. и доп. — : Просвещение, 1982. — С. 73.
  10. Seaborg G. T. The Transuranium Elements // Science. — 1946. — 25 октября (т. 104, № 2704). — С. 379—386. — ISSN 0036-8075. — DOI:10.1126/science.104.2704.379.
  11. 1 2 3 4 5 6 7 Аналитическая химия нептуния / Глав. ред.: В. А. Михайлов. — : «Наука», 1971. — 218 с. — (Аналитическая химия элементов). — 1700 экз.
  12. E. Fermi. The Development of the first chain reaction pile (англ.) // Proceedings of the American Philosophy Society. — 1946. — Iss. 90.
  13. 1 2 М. Е. Дриц, П. Б. Будберг, Г. С. Бруханов, А. М. Дриц, В. М. Пановко. Свойства элементов. — : Издательство «Металлургия», 1985. — 672 с. — 6500 экз.
  14. 1 2 3 4 5 6 7 8 9 Таблица нуклидов МАГАТЭ (англ.). Проверено 7 июля 2010. Архивировано 6 февраля 2011 года.
  15. Удельная активность нуклидов рассчитана по приведенным в таблице периодам полураспада и вероятностям спонтанного деления
  16. 1 2 3 4 5 6 7 Е. С. Пальшин, Б. Ф. Мясоедов, А. В. Давыдов. Аналитическая химия протактиния. — : «Наука», 1968. — 241 с. — (Аналитическая химия элементов). — 2200 экз.
  17. Ред. кол.: И. П. Алимарин, А. К. Бабко, А. И. Бусев, Э. Е. Вайнштейн и др. Аналитическая химия урана / Глав. ред.: А. П. Виноградов. — : Издательство Академии наук СССР, 1962. — 424 с. — (Аналитическая химия элементов). — 4000 экз.
  18. Таблица элементов, их соединений, изотопов (рус.)  (недоступная ссылка — история). Проверено 7 июля 2010. Архивировано 6 февраля 2011 года.
  19. А. Корнышева. Экспортеров урана ждет атомный бум (рус.) // Коммерсантъ. — 2005. — Вып. 19(3103).
  20. 1 2 3 4 5 6 7 8 9 Неорганическая химия в трёх томах / Под ред. Ю. Д. Третьякова. — : Издательский центр «Академия», 2007. — Т. 3. — 400 с. — (Химия переходных элементов). — 3000 экз. — ISBN 5-7695-2533-9.
  21. 1 2 3 4 5 Ф. Вайгель, Дж. Кац, Г. Сиборг и др. Химия актиноидов = The Chemistry of the Actinide Elements / Пер. с англ. под ред. Дж. Каца, Г. Сиборга, Л. Морсса. — : «Мир», 1997. — Т. 2. — 664 с. — (Химия актиноидов). — 500 экз. — ISBN 5-03-001885-9.
  22. 1 2 Глав. ред. И. Л. Кнунянц и др. Краткая Химическая Энциклопедия. — : Государственное научное издательство «Советская энциклопедия», 1961. — Т. 1. — 1263 с. — 70 000 экз.
  23. В квадратных скобках приведено массовое число наиболее долгоживущего изотопа
  24. Arnold F. Holleman, Nils Wiberg. = Lehrbuch der Anorganischen Chemie. — 102. — Берлин: de Gruyter, 2007. — Т. 2. — С. 1956. — ISBN 978-3-11-017770-1.
  25. CRC Handbook of Chemistry and Physics / Ed.: David R. Lide; William M. Haynes. — 90th ed. — London: CRC Press, 2009. — ISBN 9781420090840, 1420090844.
  26. Для α-модификации
  27. Для β-формы
  28. 1 2 3 Пер. с англ. языка под ред. Б. А. Надыкто и Л. Ф. Тимофеевой. Плутоний. — Саров: РФЯЦ-ВНИИЭФ, 2003. — Т. 1. — 292 с. — (Фундаментальные проблемы). — 500 экз. — ISBN 5-9515-00-24-9.
  29. М. С. Милюкова, Н. И. Гусев, И. Г. Сентюрин, И. С. Скляренко. Аналитическая химия плутония. — : «Наука», 1965. — 447 с. — (Аналитическая химия элементов). — 3400 экз.
  30. 1 2 Информация с сайта webelements.com (англ.).
  31. 1 2 Таблица неорганических и координационных химических соединений (рус.). — Показаны основные характеристики соединений различных элементов. Проверено 11 июля 2010. Архивировано 24 августа 2011 года.
  32. По другим данным кубический полуторный оксид кюрия имеет оливковый цвет. См. Соединения кюрия на сайте XuMuK.ru (рус.). Проверено 11 июля 2010. Архивировано 6 февраля 2011 года.
  33. Отмечается влияние атмосферы, в которой происходит образование данного соединения, на параметры решётки. Изменения в параметрах решётки и её типа могут отражать небольшие отклонения от стехиометрии в результате окисления или восстановления части трёхвалентного калифорния. «Основным» соединением принято считать кубический оксид калифорния(III).
  34. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. — : Энергоатомиздат, 1982. — 512 с.
  35. Сергей Попов, Александр Сергеев. Вселенская алхимия (рус.) // Журнал «Вокруг Света» : статья. — «Вокруг Света», 2008. — Вып. 2811. — № 4.
  36. Марина Чадеева. Вселенная своими руками: Люди как боги (рус.). Популярная Механика (октябрь 2004). Проверено 3 января 2011. Архивировано 6 февраля 2011 года.
  • Гринвуд Н. Н., Эрншо А. Актиниды и трансактинидные элементы // Химия элементов = Chemistry of the elements / Пер. с англ. ред. кол. — Учебное пособие. — : Бином. Лаборатория знаний, 2008. — Т. 2. — 607 с. — (Лучший зарубежный учебник. В 2-х томах). — 2000 экз. — ISBN 978-5-94774-373-9.
  • Gregory R. Choppin, Jan-Olov Liljenzin, Jan Rydberg. Radiochemistry and Nuclear Chemistry. — 3-е изд. — Butterworth-Heinemann, 2002. — 709 с. — ISBN 0750674636, 9780750674638.

Источник

Рейтинг
Ufactor
Добавить комментарий