Радиоактивностью называется спонтанный процесс превращения (распада) атомных ядер, сопровождающегося испусканием особого вида излучения, называемым радиоактивным .
Радиоактивные превращения свойственны лишь отдельным веществам.
Радионуклиды (изотопы)- ядра атомов способных самопроизвольно распадаться называют радионуклидами.
Например, 239 94 Pu означает, что ядро атома плутония содержит 94 протона и 145 нейтронов, всего 239 нуклонов.
Бета-распад;
Спонтанное деление атомных ядер (нейтронный распад);
Двухпротонная и кластерная радиоактивность.
Альфа-распад – характерен для тяжелых элементов, ядра которых, начиная с номера 82 таблицы Д.И.Менделеева, нестабильны, несмотря на избыток нейтронов и самопроизвольно распадаются. Ядра этих элементов преимущественно выбрасывают ядра атомов гелия.
-
Содержание
Закон радиоактивного распада
Процесс последовательных ядерных превращений, как правило, заканчивается образованием стабильных ядер.
N = N 0 e λ t ,
λ – постоянная радиоактивного распада.
Согласно уравнения закона радиоактивного распада, его кривая является экспонентой.
Время, в течение которого, вследствие самопроизвольных ядерных превращений распадается половина ядер, называется периодом полураспада Т 1/2 . Период полураспада Т 1/2 связан с постоянной распада λ зависимостью:
Период полураспада Т 1/2 у разных радионуклидов различен и колеблется в широких пределах – от долей секунды до сотен и даже тысяч лет.
Йод-131 — 8,04 суток
Стронций-90 — 29,12 лет
Плутоний-239 — 24065 лет
Калий-40 — 1,4 10 9 лет.
Cкорость распада определяется активностью вещества А:
где А и А 0 – активности вещества в моменты времени t и t 0 .
Активность радионуклида прямо пропорциональна общему количеству радиоактивных атомных ядер на момент времени t и обратно пропорциональна периоду полураспада:
В системе СИ за единицу активности принят беккерель (Бк). Один беккерель равен одному распаду в секунду. Внесистемная единица активности – кюри (Кu).
1Бк = 2,7 10 -11 Кu.
1. Радиоактивность. Основной закон радиоактивного распада. Активность.
3. Количественные характеристики взаимодействия ионизирующего излучения с веществом.
5. Использование радионуклидов в медицине.
7. Биофизические основы действия ионизирующего излучения.
9. Задачи.
Во-первых, все живое постоянно подвергается действию естественного радиационного фона, который составляют космическая радиация, излучение радиоактивных элементов, залегающих в поверхностных слоях земной коры, и излучение элементов, попадающих в организм животных вместе с воздухом и пищей.
33.1. Радиоактивность. Основной закон радиоактивного распада. Активность
В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности — спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г.
Атомные ядра состоят из протонов и нейтронов, которые имеют обобщающее название — нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (это порядковый номер химического элемента). Количество нуклонов в ядре называют массовым числом и обозначают А. Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами. Все изотопы одного химического элемента имеют одинаковые химические свойства. Физические свойства изотопов могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х. Нижний индекс — порядковый номер, верхний — массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента. Например, пишут 14 С вместо 14 6 С.
Радиоактивный распад — явление статистическое. Способность изотопа к распаду характеризует постоянная распада λ.
Вероятность распада ядра за малое время dt находится по формуле

Формула (33.3) называется основным законом радиоактивного распада.
На практике вместо постоянной распада λ часто используют другую величину, называемую периодом полураспада.
Закон радиоактивного распада с использованием периода полураспада записывается так:
Период полураспада может быть как очень большим, так и очень маленьким (от долей секунды до многих миллиардов лет). В табл. 33.1 представлены периоды полураспада для некоторых элементов.
Таблица 33.1. Периоды полураспада для некоторых элементов
Активность — число ядер радиоактивного препарата, распадающихся за единицу времени:
ребительна внесистемная единица активности — кюри (Ки), равная активности 1 г 226 Ra: 1 Ки = 3,7х10 10 Бк.

33.2. Основные виды радиоактивного распада
Альфа-распад состоит в самопроизвольном превращении ядер с испусканием α-частиц (ядра гелия).
где Х, Y — символы материнского и дочернего ядер соответственно. При записи α-распада вместо «α« можно писать «Не».
При α-распаде дочернее ядро, как правило, образуется в возбужденном состоянии и при переходе в основное состояние испускает γ-квант. Общее свойство сложных микрообъектов заключается в том, что они обладают дискретным набором энергетических состояний. Это относится и к ядрам. Поэтому γ-излучение возбужденных ядер обладает дискретным спектром. Следовательно, и энергетический спектр α-частиц является дискретным.
Бета-распад состоит в самопроизвольном превращении ядер с испусканием электронов (или позитронов).

Рис. 33.2. Энергетический спектр β-распада
1. Электронный β — -распад заключается в превращении одного ядерного нейтрона в протон и электрон. При этом появляется еще одна частица ν» — антинейтрино:
При электронном β-распаде порядковый номер Z-элемента увеличивается на 1, массовое число А не изменяется.
2. Позитронный β + -распад заключается в превращении одного ядерного протона в нейтрон и позитрон. При этом появляется еще одна частица ν — нейтрино:
Гамма-излучение имеет электромагнитную природу и представляет собой фотоны с длиной волны λ ≤ 10 -10 м.
33.3. Количественные характеристики взаимодействия ионизирующего излучения с веществом
Для количественной характеристики взаимодействия заряженной частицы с веществом используется несколько величин:
Средний линейный пробег (R) заряженной ионизирующей частицы — путь, пройденный ею в веществе до потери ионизирующей способности.
Альфа-излучение

Рис. 33.3. Зависимость линейной плотности ионизации от пути, пройденного α-частицей в среде
Электроны, образовавшиеся в процессе ионизации, как правило, уходят в сторону от трека α-частицы и вызывают вторичную ионизацию.
Таблица 33.2. Зависимость характеристик взаимодействия с веществом от энергии α-частиц
Для движения β -частицы в веществе характерна криволинейная непредсказуемая траектория. Это связано с равенством масс взаимодействующих частиц.
Таблица 33.3. Зависимость характеристик взаимодействия с веществом от энергии β-частиц
Гамма-излучение
Основными процессами, отвечающими за поглощение γ -излучения, являются фотоэффект и комптоновское рассеяние. При этом образуется относительно небольшое количество свободных электронов (первичная ионизация), которые обладают очень высокой энергией. Они-то и вызывают процессы вторичной ионизации, которая несравненно выше первичной.
радиоактивность. Радиоактивные ряды
Естественной называют радиоактивность изотопов, существующих в природе, или радиоактивность изотопов, образующихся в результате природных процессов.
Искусственной называют радиоактивность изотопов, которые возникают в результате деятельности человека.
Естественная радиоактивность

Рис. 33.4. Уран-радиевый ряд
В земной коре постоянно присутствует радиоактивный изотоп калия 40 К, который входит в состав природного калия (0,0119 %). Из почвы этот элемент поступает через корневую систему растений и с растительной пищей (зерновые, свежие овощи и фрукты, грибы) — в организм.
Таблица 33.4. Составляющая природного радиоактивного фона
Радионуклидами называют радиоактивные изотопы химических элементов с малым периодом полураспада. В природе такие изотопы отсутствуют, поэтому их получают искусственно. В современной медицине радионуклиды широко используются в диагностических и терапевтических целях.
Введение в организм радиоизотопов этих элементов позволяет обнаруживать области их концентрации по радиоактивному излучению и получать таким образом важную диагностическую информацию. Такой метод диагностики называется методом меченых атомов.
1. Гамма-терапия — использование γ-излучения высокой энергии (источник 60 Со) для разрушения глубоко расположенных опухолей. Чтобы поверхностно расположенные ткани и органы не подвергались губительному действию, воздействие ионизирующего излучения осуществляется в разные сеансы по разным направлениям.
применение альфа-лучей возможно при непосредственном контакте с поверхностью органа или при введении внутрь (с помощью иглы). Для поверхностного воздействия применяется радоновая терапия (222 Rn): воздействие на кожу (ванны), органы пищеварения (питье), органы дыхания (ингаляции).
В таблице 33.5 указаны характеристики некоторых радионуклидов, используемых в медицине.

33.6. Ускорители заряженных частиц и их использование в медицине
Ускорители создают узкие пучки частиц с заданной энергией и малым поперечным сечением. Это позволяет оказывать направленное воздействие на облучаемые объекты.
Ускорители электронов и протонов применяются в медицине для лучевой терапии и диагностики. При этом используются как сами ускоренные частицы, так и сопутствующее рентгеновское излучение.
Синхротронное рентгеновское излучение возникает в процессе ускорения электронов на кольцевых ускорителях — синхротронах. Такое излучение обладает высокой степенью направленности.
Области применения ускорителей в медицине показаны в табл. 33.6.

33.7. Биофизические основы действия ионизирующего излучения
1. Физическая стадия состоит в передаче энергии излучения молекулам биологической системы, в результате чего происходит их ионизация и возбуждение. Длительность этой стадии 10 -16 -10 -13 с.
продукты: радикалы и новые ионы с широким спектром химических свойств.
3. Химическая стадия — это взаимодействие радикалов и ионов между собой и с окружающими молекулами. На этой стадии формируются структурные повреждения различного типа, приводящие к изменению биологических свойств: нарушаются структура и функции мембран; возникают поражения в молекулах ДНК и РНК.
4. Биологическая стадия. На этой стадии повреждения молекул и субклеточных структур приводят к разнообразным функциональным нарушениям, к преждевременной гибели клетки в результате действия механизмов апоптоза или вследствие некроза. Повреждения, полученные на биологической стадии, могут передаваться по наследству.
Отметим общие закономерности биологической стадии:
Действие на последующие поколения через наследственный аппарат клетки;
Разные части клеток обладают различной чувствительностью к излучению;
Губительное действие на ткани взрослого организма, в которых есть деление;
33.8. Основные понятия и формулы

33.9. Задачи

4. Возраст древних образцов дерева можно приближенно определить по удельной массовой активности изотопа 14 6 C в них. Сколько лет тому назад было срублено дерево, которое пошло на изготовление предмета, если удельная массовая активность углерода в нем составляет 75 % от удельной массы активности растущего дерева? Период полураспада радона Т = 5570 лет.
Через сколько лет активность в этих местах снизится до относительно безопасного уровня 5 Ки/км 2 . Период полураспада цезия-137 равен Т = 30 лет.

11. Для определения объема крови у животного используется следующий метод. У животного берут небольшой объем крови, отделяют эритроциты от плазмы и помещают их в раствор с радиоактивным фосфором, который ассимилируется эритроцитами. Меченые эритроциты снова вводят в кровеносную систему животного, и через некоторое время определяют активность пробы крови.
Лекция 16
Вопросы
Ядерные реакции и их основные типы.
Закономерности , и распадов.
Дозы излучений.
Цепная реакция деления.
1. Закон радиоактивного распада
Атомное ядро, испытывающее распад, называется материнским , возникающее ядро – дочерним .
dN = – λN dt , (1)


(2)
Закон радиоактивного распада :число нераспавшихся ядер убывает со временем по экспоненциальному закону.
период полураспада T 1/2 время, за которое исходное число радиоактивных ядер уменьшается вдвое;
среднее время жизни τ радиоактивного ядра .
Суммарная продолжительность жизни dN ядер равна t |dN | = λNt dt. Проинтегрировав это выражение по t (т.е. от 0 до ∞) и разделим на начальное число ядер N 0 , получимсреднее время жизни τ радиоактивного ядра:
Табличный интеграл:

Активностью А нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами вещества в 1 с:
Внесистемная единица – кюри [Ки]: 1[Ки] = 3,710 10 [Бк].
Правило смещения для αраспада:

. (6)
где

материнское ядро; Y символ дочернего ядра;

ядро гелия (αчастица);

символическое обозначение электрона (заряд его равен е , а массовое число – нулю).
-
Ядерные реакции и их основные типы

, , (8)
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году
При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов).
по роду участвующих частиц :
2. по энергии вызывающих их частиц :
3. По роду участвующих в них ядер:
4. по характеру ядерных превращений :
3. Закономерности , и распадов

(10)
Закон Гейгера-Нэттола:

, (11)
частица с энергией 4,2 МэВ окружена потенциальным барьером кулоновских сил 8,8 МэВ. Ее вылет объясняется в квантовой механике туннельным эффектом.

(12)
распад: не является самостоятельным, а сопровождает и распады. спектр дискретен, для него характерны не волновые, а корпускулярные свойства. кванты, обладая нулевой массой покоя, не обладая зарядом, не могут замедляться в среде, а могут либо поглощаться , либо рассеиваться . Большая проникающая способность излучения используется в дефектоскопии.
N=N 0 e — λt – закон радиоактивного распада, где N – число нераспавшихся ядер, N 0 – число начальных ядер.
Физический смысл постоянной распада – вероятность распада ядра за единицу времени. Характерные времена жизни для радиоактивных ядер τ> 10 -14 c. Времена жизни ядер, обусловленные испусканием нуклонов 10 -23 с < <10 -20 c. T 1/2 – период полураспада – время, за которое распадается половина начального количества ядер. Активность радиоактивного источника – число распадов в единицу времени: A=λN.
Виды радиоактивного распада. α – распад, схема распада, закономерности распада.
Радиоактивный распад – процесс превращения неустойчивых атомных ядер в ядра других элементов, который сопровождается испусканием частиц.
Виды радиоактивного распада:
1)α – распад – сопровождается испусканием атомов гелия.
2)β – распад – испускание электронов и позитронов.
3)γ – распад – испускание фотонов при переходах между состояниями ядер.
4)Спонтанное деление ядер.
5)Нуклонная радиоактивность.
α – распад: A 2 X→ A-Y Z-2 Y+ 4 2 He. Α-распад наблюдается у тяжёлых ядер. Спектр α – распада дискретный. Длина пробега α – частицы в воздухе: 3-7см; для плотных веществ: 10 -5 м. T 1/2 10 -7 с ÷ 10 10 лет.
β – распад. Схемы β + , β — и К-захвата. Закономерности β – распада.
β – распад обусловлен слабым взаимодействием. Слабым оно является по отношению к сильным ядрам. В слабых взаимодействиях участвуют все частицы, кроме фотонов. Суть в вырождении новых частиц. T 1/2 10 -2 с ÷ 10 20 лет. Свободный пробег нейтрона 10 19 км.
β – распад включает в себя 3 вида распада:
1)β — или электронный. Ядро испускает электроны. В общем случае:
A 2 X→ A Z -1 Y+ 0 -1 e+υ e .
2)β + или позитронный. Испускаются античастицы электрона – позитроны: 1 1 p→ 1 0 n+ 0 1 e+υ e – реакция превращения протона в нейтрон. Самостоятельно реакция не проходит. Общий вид реакции: A Z X→ A Z -1 Y+ 0 1 e+υ e . Наблюдается у искусственных радиоактивных ядер.
3)Электронный захват. Происходит превращение ядра, захватывает K – оболочку и превращается в нейтрон: 1 1 p+ 0 -1 e→ 1 0 n+υ e . Общий вид: A Z X+ 0 1 e→ A Z -1 Y+υ e . В результате электрического захвата из ядер вылетает только одна частица. Сопровождается характерным рентгеновским излучением.
Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N ) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:
Единица активности в СИ —беккерель (Бк): 1 Бк — активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике —кюри (Ки): 1 Ки= 3,710 10 Бк.
Радиоактивный распад происходит в соответствии с так называемымиправилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:
где Х — материнское ядро, Y — символ дочернего ядра, Не — ядро гелия ( -частица), е- символическое обозначение электрона (заряд его равен –1, а массовое число — нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, — сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.
28. Основные закономерности a-распада. Туннельный эффект. Свойства a-излучения.
α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He).
α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.
Правило смещения Содди для α-распада:
В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.
Тунне́льный эффект — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.
Туннельный эффект можно объяснить соотношением неопределённостей. Записанное в виде:
оно показывает, что при ограничении квантовой частицы по координате, то есть увеличении её определённости по x , её импульс p становится менее определённым. Случайным образом неопределённость импульса может добавить частице энергии для преодоления барьера. Таким образом, с некоторой вероятностью квантовая частица может проникнуть через барьер, а средняя энергия частицы останется неизменной.
Альфа-излучение обладает наименьшей проникающей способностью (чтобы поглощать альфа-частицы, достаточно листа плотной бумаги) в ткани человека на глубину менее миллиметра.
29. Основные закономерности b-распада и его свойства. Нейтрино. Электронный захват. (см 27)
Беккерель доказал, что β-лучи являются потоком электронов. β-распад — это проявление слабого взаимодействия.
β-распад (точнее, бета-минус-распад, -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.
β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d -кварков в одном из нейтронов ядра в u -кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:
Правило смещения Содди для -распада:
После -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.
Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино. При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом — электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 10 19 лет. Все типы бета-распада сохраняют массовое число ядра.
Нейтри́но — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях, и относящаяся к классу лептонов.
Электро́нный захва́т , e -захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для протонноизбыточных ядер. Если энергетическая разница между родительским и дочерним атомом (доступная энергия бета-распада) превышает 1,022 МэВ (удвоенную массу электрона), электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом. Например, рубидий-83 превращается в криптон-83 только посредством электронного захвата (доступная энергия около 0,9 МэВ), тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада (доступная энергия около 2,8 МэВ).
Поскольку число протонов в ядре (т.е. заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.
Общая формула электронного захвата
30. γ-излучение ядер и его свойства. Взаимодействие γ-излучения с веществом. Возникновение и уничтожение электрон-позитронных пар.
Экспериментально установлено, что -излучение не является самостоятельным видом радиоактивности, а только сопровождает — и -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. -Спектр является линейчатым. -Спектр — это распределение числа -квантов по энергиям. Дискретность -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.
В настоящее время твердо установлено, что -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10 –13 -10 –14 с, значительно меньшее времени жизни возбужденного атома (примерно 10 –8 с), переходит в основное состояние с испусканием -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому -излучение одного и того же радиоактивного изотопа может содержать несколько групп -квантов, отличающихся одна от другой своей энергией.
При -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому -излучение рассматривают как поток частиц — -квантов. При радиоактивных распадах различных ядер -кванты имеют энергии от 10 кэВ до 5 МэВ.
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания -кванта) одному из электронов того же атома. При этом испускается так называемыйэлектрон конверсии. Само явление называетсявнутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с -излучением.
Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде -кванта, то частота излучения определяется из известного соотношения E=h. Если же испускаются электроны внутренней конверсии, то их энергии равны Е-А K , E-A L , …. где A K , A L , … — работа выхода электрона из К- и L -оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от -электронов, спектр которых непрерывен. Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электронами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.
-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении -излучения сквозь вещество они либо поглощаются, либо рассеиваются им. -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I =I 0 e – x (I 0 и I — интенсивности -излучения на входе и выходе слоя поглощающего вещества толщиной х, — коэффициент поглощения). Так как -излучение — самое проникающее излучение, то для многих веществ — очень малая величина; зависит от свойств вещества и от энергии -квантов.
-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.
Фотоэффект, или фотоэлектрическое поглощение -излучения, — это процесс, при котором атом поглощает -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий -квантов (E 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.
По мере увеличения энергии -квантов (E 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия -квантов с веществом является комптоновское рассеяние .
При E >l,02 МэВ=2m e с 2 (т e — масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом E . Поэтому при E 10 МэВ основным процессом взаимодействия -излучения в любом веществе являетсяобразованно электронно-позитронных пар.
Если энергия -кванта превышает энергию связи нуклонов в ядре (7-8 МэВ), то в результате поглощения -кванта может наблюдатьсяядерный фотоэффект — выброс из ядра одного из нуклонов, чаще всего нейтрона.
Большая проникающая способность -излучения используется в гамма-дефектоскопии — методе дефектоскопии, основанном на различном поглощении -излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.
Воздействие -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения . Различаются:
Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.
Единица поглощенной дозы излучения — грей (Гр)*: 1 Гр= 1 Дж/кг — доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.
31. Получение трансурановых элементов. Основные закономерности реакций деления ядер.
ТРАНСУРА́НОВЫЕ ЭЛЕМЕ́НТЫ, химические элементы, расположенные в периодической системе после урана, то есть с атомным номером Z >92.
Все трансурановые элементы синтезированы с помощью ядерных реакций (в природе обнаружены только микроколичества Np и Pu). Трансурановые элементы радиоактивны; с увеличением Z период полураспада T 1/2 трансурановых элементов резко уменьшается.
В 1932 г., после открытия нейтрона, было высказано предположение, что при облучении урана нейтронами должны образовываться изотопы первых трансурановых элементов. И в 1940 г. Э. Макмиллан и Ф. Эйблсон с помощью ядерной реакции синтезировалинептуний (порядковый номер 93) и изучили его важнейшие химические и радиоактивные свойства. Тогда же произошло открытие и следующего трансуранового элемента -плутония. Оба новых элемента были названы в честь планет Солнечной системы.
Все трансурановые элементы до 101-го включительно были синтезированы благодаря применению легких бомбардирующих частиц: нейтронов, дейтронов и альфа-частиц. Процесс синтеза состоял в облучении мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах или при взрыве ядерных устройств, можно получить все трансурановые элементы, до Fm (Z = 100) включительно. В качестве мишеней использовались также элементы с Z на 1 или на 2 меньше, чем у синтезируемого элемента. В период с 1940 по 1955 гг. американскими учеными под руководством Г. Сиборга были синтезированы девять новых элементов, не существующих в природе: Np (нептуний), Pu (плутоний), Am (америций), Cm (кюрий), Bk (берклий), Cf (калифорний), Es (эйнштейний), Fm (фермий), Md (менделевий). В 1951 Г. Сиборгу и Э. М. Макмиллану была присуждена Нобелевская премия «за открытия в области химии трансурановых элементов».
Возможности метода синтеза тяжелых радиоактивных элементов, при котором применяется облучение легкими частицами, ограничены, он не позволяет получать ядра с Z > 100. Элемент с Z = 101 (менделевий) был открыт в 1955 г. при облучении 253 99Es (эйнштейния) ускоренными a-частицами. Синтезы новых трансурановых элементов становились все сложнее по мере перехода к большим значениям Z . Все меньшими оказывались величины периодов полураспада их изотопов.
Я́дерная реа́кция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, часто приводящий к выделению колоссального количества энергии. При протекании ядерных реакций выполняются следующие законы: сохранения электрического заряда и числа нуклонов, сохранения энергии и
импульса, сохранения момента импульса, сохранения четности и
изотопического спина.
Реакция деления – деление атомного ядра на несколько более легких ядер. Деления бывают вынужденные и спонтанные.
Реакция синтеза – реакция слияния лёгких ядер в одно. Эта реакция происходит только при высоких температурах, порядка 10 8 К и называется термоядерной реакцией.
Энергетическим выходом реакции Q называется разность между суммарными энергиями покоя всех частиц до и после ядерной реакции. Если Q >0, то суммарная энергия покоя уменьшается в процессе ядерной реакции. Такие ядерные реакции называются экзоэнергетическими. Они могут протекать при сколь угодно малой начальной кинетической энергии частиц. Наоборот, при Q <0 часть исходной кинетической энергии частиц превращается в энергию покоя. Такие ядерные реакции называются эндоэнергетическими. Для их протекания необходимо, чтобы кинетическая энергия частиц превышала некоторую величину.
32. Цепная реакция деления. Управляемая цепная реакция. Ядерный реактор.
Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуютсякак продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k 1.
Оказывается, что не все образующиеся вторичные нейтроны вызывают последующее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.
Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа — от его количества, а также размеров и формы активной зоны. Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называютсякритическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществленияцепной реакция, называетсякритической массой.
Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а N — число нейтронов в данном поколении. В следующем поколении их число равно kN, т. е. прирост числа нейтронов за одно поколение dN = kN-N = N (k- 1). Прирост же числа нейтронов за единицу времени, т. е. скорость нарастания цепной реакции,
Интегрируя (266.1), получим
где N 0 — число нейтронов в начальный момент времени, а N — их число в момент времени t. N определяется знаком (k- 1). При k> 1 идет развивающаяся реакция , число делений непрерывно растет и реакция может стать взрывной. При k =1 идет самоподдерживающаяся реакция , при которой число нейтронов с течением времени не изменяется. При k <1 идет затухающая реакция.
Цепные реакции делятся науправляемые инеуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней U (или Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах.
В природе имеется три изотопа, которые могут служить ядерным топливом ( U: в естественном уране его содержится примерно 0,7%) или сырьем для его получения ( Th и U: в естественном уране его содержится примерно 99,3%). Th служит исходным продуктом для получения искусственного ядерного топлива U (см. реакцию (265.2)), a U, поглощая нейтроны, посредством двух последовательных – -распадов — для превращения в ядро Pu:
Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспроизводства ядерного горючего в процессе цепной реакции деления.
Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в СШАпод руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный вКанаде в сентябре 1945 года . В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.
К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·10 16 актов деления в 1 сек.
33. Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез.
Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний 10 -15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов Кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, ядерные реакции синтеза и получили название термоядерных реакций (от греч. therme «тепло, жар»).
В термоядерных реакциях выделяется огромная энергия. Например, в реакции синтеза дейтерия с образованием гелия
выделяется 3,2 МэВ энергии. В реакции синтеза дейтерия с образованием трития
выделяется 4,0 МэВ энергии, а в реакции
выделяется 17,6 МэВ энергии.
Управляемый термоядерный синтез (УТС ) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применятьсядейтерий(2 H) и тритий (3 H), а в более отдалённой перспективе гелий-3 (3 He) и бор-11 (11 B).
34. Источники и методы регистрации элементарных частиц. Типы взаимодействий и классы элементарных частиц. Античастицы.
Счетчик Гейгера — служит для подсчета количества радиоактивных частиц (в основном электронов).
Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод). При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.
Достоинства: — компактность — эффективность — быстродействие — высокая точность (10ООО частиц/с). Где используется: — регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д. — на объектах хранения радиоактивных материалов или с работающими ядерными реакторами — при поиске залежей радиоактивной руды (U, Th)
Камера Вильсона — служит для наблюдения и фотографирования следов от пролета частиц (треков). Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии: при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар. По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след. При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы.
По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы. Например, альфа-частица дает сплошной толстый трек, протон — тонкий трек, электрон — пунктирный трек.
Пузырьковая камера
Вариант камеры Вильсона
При резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние. При быстром движении частицы по следу образуются пузырьки пара, т.е. жидкость закипает, виден трек. Преимущества перед камерой Вильсона: — большая плотность среды, следовательно короткие треки — частицы застревают в камере и можно проводить дальнейшее наблюдение частиц — большее быстродействие.Метод толстослойных фотоэмульсий — служит для регистрации частиц — позволяет регистрировать редкие явления из-за большого время экспозиции. Фотоэмульсия содержит большое количество микрокристаллов бромида серебра. Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы — трек. По длине и толщине трека можно определить энергию и массу частиц.
Классы частиц и типы взаимодействий
В настоящее время существует твердое убеждение, что все в природе построено из элементарных частиц, а все природные процессы обусловлены взаимодействием этих частиц. Под элементарными частицами сегодня понимают кварки, лептоны, калибровочные бозоны и хиггсовские скалярные частицы. Под фундаментальными взаимодействиями- сильное, электро-слабое и гравитационное. Таким образом, условно можно выделить четыре класса элементарных частиц и три типа фундаментальных взаимодействий.
Нейтрино электрически нейтральны; электрон, мюон и тау-лептон обладают электрическими зарядами. Лептоны участвуют в электро- слабом и гравитационном взаимодействии.
Третий класс — это кварки. Сегодня известно шесть кварков- каждый из которых может быть «окрашен» в один из трех цветов. Как и лептоны их удобно расположить в виде трех семейств
Кварки в свободном виде не наблюдаются. Вместе с глюонами они являются составляющими адронов, которых несколько сотен. Адроны, как и составляющие их кварки, участвуют во всех типах взаимодействий.
Четвертый класс — хиггсовские частицы, экспериментально пока необнаруженные. В минимальной схеме достаточно одного хиггсовского скаляра. Их роль в природе на сегодня-в основном «теоретическая» и состоит в том, чтобы сделать электро-слабое взаимодействие перенормируемым. В частности, массы всех элементарных частиц- это «дело рук» хиггсовского конденсата. Возможно, введение хиггсовских полей необходимо для разрешения фундаментальных проблем космологии, таких как однородность и причинная связность Вселенной.
Последующие лекции по теории кварковой структуры адронов посвящены адронам и кваркам. Основное внимание будет уделяться классификации частиц, симметриям и законам сохранения.
35. Законы сохранения при превращениях элементарных частиц. Понятие о кварках.
Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e /3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 0,5·10 −19 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.
Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него,Дж. Цвейгом в 1964 году.
Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно являетсязвукоподражанием крику морских птиц.
Радиоактивность. Основной закон радиоактивного распада.
Радиоактивность — самопроизвольный распад неустойчивых ядер с испусканием других ядер и элементарных частиц.
Виды радиоактивности:
1. Естественная
2. Искусственная.
Эрнест Резерфорд – строение атома .
Виды радиоактивного распада:
α-распад: à + ; β-распад: à +
Основной закон радиоактивного распада. N= N o e -лt
Число нераспавшихся радиоактивных ядер убывает по экспонициальному закону. Л(лямбда)-постоянная распада.
Постоянная распада. Период полураспада. Активность. Виды радиоактивного распада и их спектры.
Л(лямбда)-постоянная распада, пропорциональная вероятности распада радиоактивного ядра и различная для разных радиоактивных веществ.
Период полураспада (T)- это время, в течение которого распадается половина радиоактивных ядер. T=ln2/л=0,69/л.
Активность характеризуется скоростью распада. A=-dN/dT=лN=лN o e -лt =(N/T)*ln2
[A]-беккерель (Бк)= 1распад/секунду.
[А]-кюри (Ки) . 1 Ки=3,7*10 10 Бк=3,7*10 10 с -1
[А]-резерфорд(Рд). 1Рд=10 6
Виды радиоактивного распада. Правило смещения.
Альфа-распад(самое слабое): А Z X> 4 2 He + A-4 Z-2 Y
Бета-распад: A Z X> 0 -1 e + A Z+1 Y
Энергетические спектры частиц многих радиоактивных элементов состоят из нескольких линий. Причина появления такой структуры спектра — распад начального ядра (А,Z) на возбужденное состояние ядра(А-4,Z-2. Для альфа — распада, например). Измеряя спектры частиц можно получить информацию о природе возбужденных состояний ядра.
Характеристики взаимодействия заряженных частиц с веществом: линейная плотность ионизации, линейная тормозная способность, средний линейный пробег. Проникающая и ионизирующая способности альфа, бета и гамма излучения.
Заряженные частицы, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изменяется состояние как вещества, так и частиц.
Линейная плотность ионизации — это отношение ионов знака dn, образованных заряженных ионизированной частицей на элементарном пути dL, к длине этого пути. I=dn/dL.
Линейная тормозная способность- это отношение энергии dE, теряемой заряженной ионизирующей частицей при прохождении элементарного пути dL, к длине этого пути. S= dE/dL.
Средний линейный пробег- это расстояние, которое ионизирующая частица проходит в веществе без столкновения. R-средний линейный пробег.
Необходимо учитывать проникающую способность излучений. Например, тяжелые ядра атомов и альфа-частицы имеют крайне малую длину пробега в веществе, поэтому радиоактивные альфа — источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью, поскольку состоят из высокоэнергетических фотонов, не обладающих зарядом.